Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

1.
M. P.
van Albada
and
A.
Lagendijk
,
Phys. Rev. Lett.
55
, p.
2692
(
1985
).
2.
Y.
Kuga
and
A.
Ishimaru
,
J. Opt. Soc. Am A
1
,
831
835
(
1984
).
3.
P.-E.
Wolf
and
G.
Maret
,
Phys. Rev. Lett.
55
, p.
2696
(
1985
).
4.
P. W.
Anderson
,
Phys. Rev.
109
, p.
1492
(
1958
).
5.
P. W.
Anderson
,
Phil. Mag. B
52
,
505
509
(
1985
).
6.
M. F.
Limonov
and
R. M. De La
Rue
, eds.,
Optical Properties of Photonic Structures: Interplay of Order and Disorder
(
CRC Press, Taylor & Francis Group
,
2012
).
7.
M.
Farsari
and
B. N.
Chichkov
,
Nature Photon.
3
,
450
452
(
2009
).
8.
J.
Fischer
and
M.
Wegener
,
Laser Photon. Rev.
7
,
22
44
(
2013
).
9.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
, 2nd ed. (
Princeton Univ. Press
,
2008
) p.
304
.
10.
R.
Penrose
,
Bull. Inst. Math. Appl.
10
,
266
271
(
1974
).
11.
I. I.
Shishkin
,
K. B.
Samusev
,
M. V.
Rybin
,
M. F.
Limonov
,
Y. S.
Kivshar
,
A.
Gaidukeviciute
,
R. V.
Kiyan
, and
B. N.
Chichkov
,
JETP Letters
95
,
457
461
(
2012
).
12.
M. V.
Rybin
,
I. I.
Shishkin
,
K. B.
Samusev
,
P. A.
Belov
,
Y. S.
Kivshar
,
R. V.
Kiyan
,
B. N.
Chichkov
, and
M. F.
Limonov
,
Crystals
5
,
61
73
(
2015
).
13.
M. V.
Rybin
,
I. S.
Sinev
,
A. K.
Samusev
,
K. B.
Samusev
,
E. Y.
Trofimova
,
D. A.
Kurdyukov
,
V. G.
Golubev
, and
M. F.
Limonov
,
Phys. Rev. B
87
, p.
125131
(
2013
).
14.
A. K.
Samusev
,
K. B.
Samusev
,
M. V.
Rybin
,
M. F.
Limonov
,
E. Y.
Trofimova
,
D. A.
Kurdyukov
, and
V. G.
Golubev
,
Phys. Solid State
53
,
1056
1061
(
2011
).
15.
M. V.
Rybin
,
K. B.
Samusev
,
S. Y.
Lukashenko
,
Y. S.
Kivshar
, and
M. F.
Limonov
,
Sci. Rep.
6
, p.
30773
(
2016
).
16.
M. A.
Kaliteevski
,
S.
Brand
,
R. A.
Abram
,
T. F.
Krauss
,
R. D.
Rue
, and
P.
Millar
,
Nanotechnology
11
, p.
274
(
2000
).
17.
D.
Shir
,
H.
Liao
,
S.
Jeon
,
D.
Xiao
,
H. T.
Johnson
,
G. R.
Bogart
,
K. H. A.
Bogart
, and
J. A.
Rogers
,
Nano Lett.
8
,
2236
2244
(
2008
).
18.
A. N.
Poddubny
and
E. L.
Ivchenko
,
Phys. E
42
,
1871
1895
(
2010
).
19.
A. N.
Poddubny
,
Phys. Rev. B
83
, p.
075106
(
2011
).
20.
E.
Yablonovitch
,
T. J.
Gmitter
, and
K. M.
Leung
,
Phys. Rev. Lett.
67
, p.
2295
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.