A new embedded Two Derivative Runge-Kutta method (TDRK) based on First Same As Last (FSAL) technique for the numerical solution of first order Initial Value Problems (IVPs) is derived. We present an embedded 4(3) pair explicit fourth order TDRK method with a ‘small’ principal local truncation error coefficient. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of our method in comparison with other existing embedded Runge-Kutta methods (RK) of the same order.

1.
R. P.
Chan
and
A. Y.
Tsai
,
Numerical Algorithms
53
,
171
194
(
2010
).
2.
R. P.
Chan
,
S.
Wang
, and
A. Y.
Tsai
, “
Two-Derivative Runge-Kutta Methods for Differential Equations
,” in
Numerical Analysis and Applied Mathematics ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics
, Vol.
1479
(
AIP Publishing
,
2012
), pp.
262
266
.
3.
Y.
Zhang
,
H.
Che
,
Y.
Fang
, and
X.
You
,
Journal of Applied Mathematics
2013
(
2013
).
4.
Y.
Fang
,
X.
You
, and
Q.
Ming
,
International Journal of Modern Physics C
24
,
1350073
(
2013
).
5.
Z.
Chen
,
J.
Li
,
R.
Zhang
, and
X.
You
,
Computational and mathematical methods in medicine
2015
(
2015
).
6.
P.
Bogacki
and
L. F.
Shampine
,
Applied Mathematics Letters
2
,
321
325
(
1989
).
7.
J. R.
Dormand
and
P. J.
Prince
,
Journal of computational and applied mathematics
6
,
19
26
(
1980
).
8.
C.
Tsitouras
,
Computers & Mathematics with Applications
62
,
770
775
(
2011
).
9.
Y.
Fang
,
Y.
Song
, and
X.
Wu
,
Physics Letters A
372
,
6551
6559
(
2008
).
10.
E.
Hairer
,
S. P.
Norsett
, and
G.
Wanner
,
Solving Ordinary Differential Equations: Non-stiff problems. V.2: Stiff and differential-algebraic problems
(
Springer Verlag
,
2010
).
11.
E.
Stiefel
and
D.
Bettis
,
Numerische Mathematik
13
,
154
175
(
1969
).
12.
T.
Simos
and
J.
Vigo-Aguiar
,
Physical Review E
67
,
016701
(
2003
).
13.
R. C.
Allen
and
G. M.
Wing
,
Journal of Computational Physics
14
,
40
58
(
1974
).
14.
H. M.
Radzi
,
Z. A.
Majid
,
F.
Ismail
, and
M.
Suleiman
, “
Four Step Implicit Block Method of Runge-Kutta Type for Solving First Order Ordinary Differential Equations
,” in
Modeling, Simulation and Applied Optimization (ICMSAO), 2011 4th International Conference on
(
IEEE
,
2011
), pp.
1
5
.
15.
C.
Jawias
,
N.
Izzati
,
F.
Ismail
,
M.
Suleiman
, and
A.
Jaafar
,
Malaysian Journal of Mathematical Sciences
4
,
95
105
(
2010
).
16.
F.
Rabiei
and
F.
Ismail
,
Australian Journal of Basic and Applied Sciences
6
,
97
105
(
2012
).
17.
Y. D.
Jikantoro
,
F.
Ismail
, and
N.
Senu
, “
A new fourth-order explicit runge-kutta method for solving firstorder ordinary differential equations
,” in
Proceedings of The 20th National Symposium Onmathematical Sciences: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation
Vol.
1522
(
AIP Publishing
,
2013
), pp.
1003
1010
.
18.
P.
Deuflhard
and
F.
Bornemann
,
Scientific Computing with Ordinary Differential Equations
, Vol.
42
(
Springer Science & Business Media
,
2012
).
19.
J. R.
Dormand
,
Numerical Methods for Differential Equations: A Computational Approach
, Vol.
3
(
CRC Press
,
1996
).
20.
J.
Dormand
and
P.
Prince
,
Celestial Mechanics
18
,
223
232
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.