Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient’s brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.

1.
F.
Zakaria
, “
Dynamic profiling of electroencephalographic data during seizures using fuzzy information space
”, Ph.D thesis,
Universiti Teknologi Malaysia
,
2008
.
2.
A.
Muhammad
and
A.
Tahir
,
Journal of Mathematic and Statistics
9
,
180
185
(
2013
).
3.
A.
Nazihah
,
A.
Tahir
and
M. I.
Hussain
, “
Topologizing the bioelectromagnetic field
”,
Proceedings of the 5th Asian Mathematical Conference
(
Kuala Lumpur
,
2009
), pp.
22
26
.
4.
G. T.
Herman
,
Geometry of Digital Spaces
(
Springer
,
Boston
,
1998
), pp.
216
.
5.
E.
Melin
,
Digital geometry and Khalimsky spaces
(
Department of Mathematics, Uppsala University
,
Uppsala
,
2008
), pp.
54
.
6.
A.
Nazihah
and
A.
Tahir
, “
Digital Space of Flat EEG
”,
Proceedings of the World Congress on Engineering 2012
Vol
III
(
London, U.K
,
2012
).
7.
C. O.
Kiselman
,
Digital geometry and mathematical morphology
(
Uppsala University
,
2004
).
8.
C. L.
Chang
,
Journal of Mathematical Analysis
24
,
97
105
(
1968
).
9.
C. K.
Wong
,
Journal of Mathematical Analysis Application
46
,
316
328
(
1974
).
10.
A. M.
Anile
,
S.
Deodato
and
G.
Privitera
,
Fuzzy Sets Systems
72
,
239
250
(
1995
).
11.
G.
Gallo
and
S.
Spinello
,
Graphical Models
62
,
40
55
(
2000
).
12.
S.
Bodjanava
,
Information Sciences
172
, pp.
73
89
(
2005
).
13.
W. Abd
Fatah
, “
Pemodelan geometri menggunakan teori set kabur
”, Ph.D thesis,
Universiti Sains Malaysia
,
2008
.
14.
L. A.
Zadeh
,
Journal of Information Control
8
,
338
353
(
1965
).
15.
G. J.
Klir
and
T. A.
Folger
,
Fuzzy Sets, Uncertainty, and Information
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1988
).
16.
G. J.
Klir
and
Bo
Yuan
,
Fuzzy Sets and Fuzzy Logic: Theory and Application
(
Prentice Hall
,
Upper Saddle River, NJ
,
1995
).
17.
G. J.
Klir
,
Ute H. St.
Clair
, and
Bo
Yuan
,
Fuzzy Set Theory
(
Upper Saddle River
,
NJ
,
1997
).
18.
M.S.
Stachowicz
and
M. E.
kochanska
, “
Graphic interpolation of fuzzy sets and fuzzy relations
” in
Mathematics at the service of man
, edited by
A.
Ballester
,
D.
Cardus
,
E.
Trillas
,
based on materials of Second World Conf
., (
Universidad Politecnica las Palmas
,
Spain
,
1982
).
19.
H. J.
Zimmermann
,
Fuzzy Set Theory and its applications
, 3rd ed. (
Kluwer Academic Publishers
,
Boston, MA
,
1996
).
20.
N.
Sladoje
,
Fuzzy Set Theory in Image Processing
(14 July 2011).
21.
D.
Dubois
and
H.
Prade
,
International Journal of System Science
9
,
613
626
(
1978
).
22.
P. M.
Pu
and
Y. M.
Liu
,
Journal of Mathematical Analysis Application
76
,
571
599
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.