Lithium vanadate Li3VO4 (LVO) is known to be as one of the attractive candidates for negative electrode of lithium-ion battery (LIB) with high safety. Although theoretical capacity of LVO attains to 400 mAh g-1, the actual charge and discharge capacities are far below due to its low electrical and ionic conductivity. In this study, we synthesized carbon-coated LVO (C-LVO) via one-step solid state reaction method and examined its properties as a negative electrode for LIB. From XRD measurements and SEM observation, crystal structure of C-LVO was nearly identical with non-coated one but grain size of former was much smaller than latter with same annealing temperature, suggesting that introduction of carbon source in starting materials effectively helps to suppress LVO grain growth during annealing. TEM observation of C-LVO also shows that amorphous carbon layer with its thickness of several ten nm was formed on the surface of LVO grain. In electrochemical testing, C-LVO shows much higher charge and discharge capacities than non-coated LVO.

1.
J.M.
β€ˆ
Tarascon
and
M.
β€ˆ
Armand
,
Nature
β€ˆ
414
,
359
–
367
(
2001
).
2.
B.
β€ˆ
Scrosati
and
J.
β€ˆ
Garche
,
Journal of Power Sources
β€ˆ
195
,
2419
–
2430
(
2010
).
3.
J.B.
β€ˆ
Goodenough
and
Y.
β€ˆ
Kim
,
Journal of Power Sources
β€ˆ
196
,
6688
–
6694
(
2011
).
4.
Z.
β€ˆ
Chen
,
I.
β€ˆ
Belharouak
,
Y.-K.
β€ˆ
Sun
and
K.
β€ˆ
Amine
,
Advanced Functional Materials
β€ˆ
23
,
959
–
969
(
2013
).
5.
T.
β€ˆ
Ohzuku
,
A.
β€ˆ
Ueda
and
N.
β€ˆ
Yamamoto
,
Journal of The Electrochemical Society
β€ˆ
142
,
1431
–
1435
(
1995
).
6.
D.
β€ˆ
Yoshikawa
,
Y.
β€ˆ
Kadoma
,
J.M.
β€ˆ
Kim
,
K.
β€ˆ
Ui
,
N.
β€ˆ
Kumagai
,
N.
β€ˆ
Kitamura
and
Y.
β€ˆ
Idemoto
,
Electrochimica Acta
β€ˆ
55
,
1872
–
1879
(
2010
).
7.
M.S.
β€ˆ
Song
,
A.
β€ˆ
Benayad
,
Y.M.
β€ˆ
Choia
and
K.S.
β€ˆ
Park
,
Chemical Communications
β€ˆ
48
,
516
–
518
(
2011
).
8.
H.
β€ˆ
Li
,
X.
β€ˆ
Liu
,
T.
β€ˆ
Zhai
,
D.
β€ˆ
Li
and
H.
β€ˆ
Zhou
,
Advanced Energy Materials
β€ˆ
3
,
428
–
432
(
2012
).
9.
W-T.
β€ˆ
Kim
,
Y.U.
β€ˆ
Jeong
,
Y.J.
β€ˆ
Lee
,
Y. J.
β€ˆ
Kim
and
J.H.
β€ˆ
Song
,
Journal of Power Sources
β€ˆ
244
,
557
–
560
(
2013
).
10.
W-T.
β€ˆ
Kim
,
B-K.
β€ˆ
Min
,
H.C.
β€ˆ
Choi
,
Y.J.
β€ˆ
Lee
and
Y.U.
β€ˆ
Jeong
,
Journal of The Electrochemical Society
β€ˆ
161
,
A1302
–
A1305
(
2014
).
11.
J.T.
β€ˆ
Han
,
Y.H.
β€ˆ
Huang
and
J.B.
β€ˆ
Goodenough
,
Chemistry of Materials
β€ˆ
23
,
2027
–
2029
(
2011
).
12.
K.
β€ˆ
Tang
,
X.K.
β€ˆ
Mu
,
P.A.
β€ˆ
Aken
,
Y.
β€ˆ
Yu
and
J.
β€ˆ
Maier
,
Advanced Energy Materials
β€ˆ
3
,
49
–
53
(
2012
).
13.
L.
β€ˆ
Fei
,
Y.
β€ˆ
Xu
,
X.
β€ˆ
Wu
,
Y.
β€ˆ
Li
,
P.
β€ˆ
Xie
,
S.
β€ˆ
Deng
,
S.
β€ˆ
Smirnov
and
H.
β€ˆ
Luo
,
Nanoscale
β€ˆ
5
,
11102
–
11107
(
2013
).
14.
C.
β€ˆ
Jo
,
Y.
β€ˆ
Kim
,
J.
β€ˆ
Hwang
,
J.
β€ˆ
Shim
,
J.
β€ˆ
Chun
and
J.
β€ˆ
Lee
,
Chemistry of Materials
β€ˆ
26
,
3508
–
3514
(
2014
).
15.
S.
β€ˆ
Jayaraman
,
V.
β€ˆ
Aravindan
,
P.S.
β€ˆ
Kumar
,
W.C.
β€ˆ
Ling
,
S.
β€ˆ
Ramakrishna
and
S.
β€ˆ
Madhavi
,
ACS Applied Materials & Interfaces
β€ˆ
6
,
8660
–
8666
(
2014
).
16.
B.
β€ˆ
Guo
,
X.
β€ˆ
Yu
,
X.G.
β€ˆ
Sun
,
M.
β€ˆ
Chi
,
Z.A.
β€ˆ
Qiao
,
J.
β€ˆ
Liu
,
Y.S.
β€ˆ
Hu
,
X.Q.
β€ˆ
Yang
,
J.B.
β€ˆ
Goodenough
and
S.
β€ˆ
Dai
,
Energy & Environmental Science
β€ˆ
7
,
2220
–
2226
(
2014
).
17.
S.
β€ˆ
Hu
,
Y.
β€ˆ
Song
,
S.
β€ˆ
Yuan
,
H.
β€ˆ
Liu
,
Q.
β€ˆ
Xu
,
Y.
β€ˆ
Wang
,
C-X.
β€ˆ
Wang
and
Y-Y
β€ˆ
Xia
,
Journal of Power Sources
β€ˆ
303
,
333
–
339
(
2016
).
18.
S.
β€ˆ
Ni
,
X.
β€ˆ
Lv
,
J.
β€ˆ
Ma
,
X.
β€ˆ
Yang
and
Lulu
β€ˆ
Zhang
,
Journal of Power Sources
β€ˆ
248
β€ˆ
122
–
129
(
2014
).
19.
Z.
β€ˆ
Liang
,
Y.
β€ˆ
Zhao
,
L.
β€ˆ
Ouyang
,
Y.
β€ˆ
Dong
,
Q.
β€ˆ
Kuang
,
X.
β€ˆ
Lin
,
X.
β€ˆ
Liu
,
D.
β€ˆ
Yan
,
Journal of Power Sources
β€ˆ
252
β€ˆ
244
–
247
(
2014
).
20.
Z.
β€ˆ
Liang
,
Z.
β€ˆ
Lin
,
Y.
β€ˆ
Zhao
,
Y.
β€ˆ
Dong
,
Q.
β€ˆ
Kuang
,
X.
β€ˆ
Lin
,
X.
β€ˆ
Liu
,
D
β€ˆ
Yan
,
Journal of Power Sources
β€ˆ
274
β€ˆ
345
–
354
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.