Article PDF first page preview

First page of The central limit theorem for continuous random dynamical systems
1.
M. F.
Barnsley
,
S. G.
Demko
,
J. H.
Elton
and
J. S.
Geronimo
,
Invariant measures arising from iterated function systems with place dependent probabilities
,
Ann. Inst. H. Poincaré
24
,
367
394
(
1988
).
2.
R. J.
Griego
and
R.
Hersh
,
Random evolutions, Markov chains and systems of partial differential equations
,
Proc. Nat. Acad. Sci USA
62
,
305
308
(
1969
).
3.
M.
Hairer
,
Exponential mixing properties of stochastic PDEs through asymptotic coupling
,
Probab. Theory Relat. Fields
124
,
345
380
(
2002
).
4.
S.C.
Hille
,
K.
Horbacz
,
T.
Szarek
&
H.
Wojewódka
,
Limit theorems for some Markov operators
,
J. Math.Anal.Appl.
443
,
385
408
(
2016
).
5.
K.
Horbacz
,
Invariant measures for random dynamical systems
,
Dissertationes Math.
451
, (
2008
).
6.
K.
Horbacz
,
Continuous random dynamical systems
,
J. Math. Ann. Appl.
408
,
623
637
(
2013
).
7.
K.
Horbacz
,
T.
Szarek
,
Continuous iterated function systems on Polish spaces
,
Bull. Polish Acad. Sci. Math.
49
.
2
,
191
202
(
2001
).
8.
K.
Horbacz
,
Strong Law of large numbers for continuous random dynamical systems
,
Submitted for publication
Statistics and Probability Letters
DOI (
2016
).
9.
J. B.
Keller
,
Stochastic equations and wave propagation in random media, Proc. Sympos. Appl. Math.
16
,
1456
1470
(
1964
).
10.
A.
Lasota
and
M. C.
Mackey
,
Cell division and the stability of cellular population
,
J. Math. Biol.
38
,
241
261
(
1999
).
11.
A.
Lasota
and
J.
Traple
,
Invariant measures related with Poisson driven stochastic differential equation
,
Stochastic Process. Appl.
106
.
1
,
81
93
(
2003
).
12.
A.
Lasota
and
J. A.
Yorke
,
Lower bound technique for Markov operators and iterated function systems
,
Random Comput. Dynam.
2
,
41
77
(
1994
).
13.
T.
Lipniacki
,
P.
Paszek
,
A.
Marciniak-Czochra
,
A. R.
Brasier
,
M.
Kimel
,
Transcriptional stochasticity in gene expression
,
J. Theor. Biol.
238
,
348
367
(
2006
).
14.
M.
Maxwell
&
M.
Woodroofe
,
Central limit theorems for additive functionals of Markov chains
,
The Annals of Probability
,
28
(
2
),
713
724
, (
2000
).
15.
J. J.
Tyson
and
K. B.
Hannsgen
,
Cell growth and division: a deterministic /probabilistic model of the cell cycle
,
J.Math. Biology
26
,
465
475
(
1988
).
16.
A.
Murray
,
T.
Hunt
,
The Cell Cycle
,
Oxford University Press
(
1993
).
17.
I.
Werner
,
Contractive Markov system
,
J. London Math. Soc.
(
2
)
71
,
236
258
(
2005
).
This content is only available via PDF.
You do not currently have access to this content.