The semi-smooth Newton method is used for solving contact problems with the Tresca friction in 2D and 3D. The implementations related to the active set optimization algorithms are shown. Numerical experiments illustrate theoretical results.
REFERENCES
1.
Chen
X.
, Nashed
Z.
, Qi
L.
: Smoothing methods and semismooth methods for non-differentiable operator equations
, SIAM Numer. Anal.
38
, 2000
, 1200
–1216
.2.
Dostál
Z.
, Schöberl
J.
: Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination
, COA
30
, 2005
, 23
–44
.3.
Kučera
R.
, Motyčková
K.
, Markopoulos
A.
: The R-linear Convergence Rate of an Algorithm Arising from the Semi-smooth Newton Method Applied to 2D Contact Problems with Friction
, COA
61
, 2015
, 2, 437
–461
.4.
Kučera
R.
, Motyčková
K.
, Markopoulos
A.
: An analysis of variants of the semi-smooth Newton method for solving 3D contact problems with the Tresca friction
, in preparation.5.
Ito
K.
, Kunisch
K.
: Semi-smooth Newton methods for variational inequalities of the first kind
, ESAIM: Mathematical Modelling and Numerical Analysis
30
, 2010
, 41
–62
.6.
Kunisch
K.
, Stadler
G.
: Generalized Newton methods for the 2D-Signorini contact problem with friction in function space
, M2AN Math. Model. Numer. Anal.
39
, 2005
, 827
–854
.7.
Hüeber
S.
, Matei
A.
, Wohlmuth
B.
: Efficient algorithms for problems with friction
, SIAM Sci. Comput.
29
, 2007
, 70
–92
.8.
Kučera
R.
: Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints
, SIAM J. Optim.
19
, 2008
, 846
–862
.9.
Hüeber
S.
, Stadler
G.
, Wohlmuth
B.
: A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction
, SIAM Sci. Comput.
30
, 2008
, 572
–596
.10.
Hintermüller
M.
, Ito
K.
, Kunisch
K.
: The primal-dual active set strategy as a semismooth Newton method
, SIAM Optim.
13
, 2003
, 865
–888
.11.
12.
Wohlmuth
B. I.
: Variationally consistent discretization schemes and numerical algorithms for contact problems
, Acta Numerica
, 20
, 2011
, 569
–734
.
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.