In this paper we study the use of energy-conserving methods, in the class of Hamiltonian Boundary Value Methods, for the numerical solution of the nonlinear Schrödinger equation.

1.
T.J.
Bridges
,
S.
Reich
.
Numerical methods for Hamiltonian PDEs
.
J. Phys. A: Math. Gen.
39
(
2006
)
5287
5320
.
2.
L.
Brugnano
,
G. Frasca
Caccia
,
F.
Iavernaro
.
Efficient implementation of geometric integrators for separable Hamiltonian problems
.
AIP Conf. Proc.
1588
(
2013
)
734
737
.
3.
L.
Brugnano
,
G. Frasca
Caccia
,
F.
Iavernaro
.
Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods
.
Numer. Algor.
65
(
2014
)
633
650
.
4.
L.
Brugnano
,
G. Frasca
Caccia
,
F.
Iavernaro
.
Energy conservation issues in the numerical solution of the semilinear wave equation
.
Appl. Math. Comput.
270
(
2015
)
842
870
.
5.
L.
Brugnano
,
F.
Iavernaro
.
Line Integral Methods for Conservative Problems
.
Chapman et Hall/CRC
,
Boca Raton, FL
,
2016
.
6.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
Hamiltonian Boundary Value Methods (Energy Preserving Discrete Line Integral Methods
).
J. Numer. Anal. Ind. Appl. Math.
5
,
1-2
(
2010
)
17
37
.
7.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
Analisys of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems
.
Communications in Nonlinear Science and Numerical Simulation
20
,
3
(
2015
)
650
667
.
8.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
A note on the efficient implementation of Hamiltonian BVMs
.
J. Comput. Appl. Math.
236
(
2011
)
375
383
.
9.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
A simple framework for the derivation and analysis of effective one-step methods for ODEs
.
Appl. Math. Comput.
218
(
2012
)
8475
8485
.
10.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
Energy and QUadratic Invariants Preserving integrators based upon Gauss collocation formulae
.
SIAM Journal on Numerical Analysis
50
, No.
6
(
2012
)
2897
2916
.
11.
T.
Cazenave
.
Semilinear Schrödinger Equations.
American Mathematical Society
,
2003
.
12.
F.
Iavernaro
,
B.
Pace
.
s-Stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type
.
AIP Conf. Proc.
936
(
2007
)
603
606
.
13.
A.L.
Islas
,
C.M.
Schober
.
Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs
.
Mathematic and Computers in Simulation
69
(
2005
)
290
303
.
14.
B.
Leimkulher
,
S.
Reich
.
Simulating Hamiltonian Dynamics
.
Cambridge University Press
,
2004
.
15.
J.M.
Sanz-Serna
.
Runge-Kutta schemes for Hamiltonian systems
.
BIT
28
(
1988
)
877
883
.
This content is only available via PDF.
You do not currently have access to this content.