The third-order nonlinear trinomial difference equation of the form
is studied. Rewriting this equation as a binomial third-order difference equation we establish a classification of all nonoscillatory solutions, criteria for oscillation of bounded solutions and sufficient conditions for the existence of certain types of nonoscillatory solutions of the above equation.
1.
R.P.
Agarwal
,
Difference equations and inequalities. Theory, methods, and applications
, Second Edition,
Revised and Expanded, Marcel Dekker
,
New York
,
2000
.
2.
R.P.
Agarwal
,
M.
Bohner
,
S.R.
Grace
,
D.
O’Regan
,
Discrete oscillation theory
,
Hindawi Publishing Corporation
,
2005, New York
,
2005
.
3.
M. F.
Aktaş
,
F.
Mustafa
,
A.
Tiryaki
,
A.
Zafer
,
Oscillation of third-order nonlinear delay difference equations
,
Turkish J. Math.
36
(
2012
), No.
3
,
422
436
.
4.
A.
Andruch-Sobiło
,
M.
Migda
,
Bounded solutions of third order nonlinear difference equations
,
The Rocky Mountain J. Math.
36
(
2006
), No.
1
,
23
34
.
5.
B.
Baculíková
,
J.
Džurina
,
Y.
Rogovchenko
,
Oscillation of third order trinomial differential equations
,
Appl. Math. Comput.
218
(
2012
),
7023
7033
.
6.
B.
Baculíková
,
J.
Džurina
,
I.
Jadlovska
,
Properties of the third order trinomial functional differential equations
,
Electronic Journal of Qualitative Theory of Differential Equations
34
(
2015
),
1
13
.
7.
Z.
Došlá
,
A.
Kobza
,
On third-order linear difference equations involving quasi-differences
,
Adv. Differ. Equ.
(
2006
), Article ID 65652.
8.
J.
Džurina
,
R.
Kotorová
,
Properties of the third order trinomial differential equations with delay argument
,
Nonlinear Anal.
71
(
2009
),
1995
2002
.
9.
J.
Graef
,
E.
Thandapani
,
Oscillatory and asymptotic behaviour of solutions of third-order delay difference equations
,
Funkcialaj Ekvacioj
42
(
1999
),
355
369
.
10.
W. G.
Kelley
,
A. C.
Peterson
,
Difference equations. An introduction with applications
, Second edition,
Harcourt/Academic Press
,
San Diego, CA
,
2001
.
11.
Z.
Liu
,
L.
Wang
,
G.
Kimb
,
S.
Kang
,
Existence of uncountably many bounded positive solutions for a third order nonlinear neutral delay difference equation
,
Comput. Math. Appl.
60
(
2010
),
2399
2416
.
12.
M.
Migda
,
Nonoscillatory solutions of some higher order difference equations
,
Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math.
13
(
2003
),
177
185
.
13.
M.
Migda
,
On the existence of nonoscillatory solutions of some higher order difference equations
,
Appl. Math. E-Notes
4
(
2004
),
33
39
.
14.
M.
Migda
,
Oscillation and nonoscillation results for higher order nonlinear difference equations
,
Fields Inst. Commun.
42
(
2004
),
285
294
.
15.
M.
Migda
,
On the discrete version of generalized Kiguradze’s lemma
,
Fasc. Math.
35
(
2005
),
77
83
.
16.
S. H.
Saker
,
J. O.
Alzabut
,
A.
Mukheimer
,
On the oscillatory behavior for a certain class of third order nonlinear delay difference equations
,
Electron. J. Qual. Theory Differ. Equ.
67
(
2010
),
1
16
.
17.
B.
Smith
,
Oscillation and nonoscillation theorems for third order quasi-adjoint difference equation
,
Port. Math.
45
(
1988
),
229
234
.
18.
W. F.
Trench
,
Canonical forms and principal systems for general disconjugate equations
,
Trans. Am. Math. Soc.
189
(
1974
),
319
327
.
This content is only available via PDF.
You do not currently have access to this content.