The present paper is concerned with the propagation of shear waves in an anisotropic inhomogeneous layer whose elastic constants are functions of temperature. The dependence of material properties on temperature gives rise to inhomogeneity of the layer which is one of the trivial characteristics of the constituent layers of earth which may cause due to the presence of various types of elements and compounds beneath the earth. The layer is lying over a rigid foundation and there is no loading on the upper boundary. The dispersion equation of shear waves has been obtained in closed form. Numerical computations are performed and graphs are plotted to show the effect of inhomogeneity and anisotropy factors on the dimensionless phase velocity. It is found that the phase velocity is considerably influenced by the inhomogeneity and anisotropy of the layer.

1.
J.
Nowiński
,
Thermoelastic problem for an isotropic sphere with temperature dependent properties
,
Z Angew Math Phys
,
10
,
565
575
(
1959
).
2.
J.
Nowiński
,
A Betti–Rayleigh theorem for elastic bodies exhibiting temperature dependent properties
,
Appl Sci Res
,
A9
,
429
436
(
1960
).
3.
J.
Nowiński
,
Transient thermoelastic problems for an infinite medium with a spherical cavity exhibiting temperature dependent properties
.
J Appl Mech
,
29
,
399
407
(
1962
).
4.
J. L.
Nowiński
,
Theory of Thermoelasticity with Applications
.
Alphen aan den Rijn, Sijthoff and Noordhoff
,
1978
.
5.
L. N.
Tao
,
The heat conduction problem with temperature-dependent material properties
,
Int J Heat Mass Tran
,
32
,
487
491
(
1989
).
6.
H. J.
Lee
, and
D. A.
Saravanos
,
The effect of temperature dependent material properties on the response of piezoelectric composite materials
,
J Intel Mater Syst Struct
,
9
,
503
508
(
1998
).
7.
D. A.
Czaplewski
,
J. P.
Sullivan
,
T. A.
Friedmann
 et al,
Temperature dependence of the mechanical properties of tetrahedrally coordinated amorphous carbon thin films
,
Appl Phys Lett
,
87
,
161,915
161,918
(
2005
).
8.
A. R.
Tillmann
,
V. L.
Borges
,
G.
Guimaraes
, et al,
Identification of temperature-dependent thermal properties of solid materials
,
J Brazil Soc Mech Sci Eng
,
30
,
269
278
(
2008
).
9.
E.
Schreiber
,
O. L.
Anderson
and
N.
Soga
,
Elastic Constants and Their Measurement
.
Mc Graw-Hill
,
1973
.
10.
T.
Hata
,
Thermoelastic problem for a Griffith crack in a plate with temperature-dependent properties under a linear temperature distribution
,
J Therm Stresses
,
2
,
353
366
(
1979
).
11.
T.
Hata
,
Thermoelastic problem for a Griffith crack in a plate whose shear modulus is an exponential function of the temperature
,
Z Angew Math Mech
,
61
,
81
87
(
1981
).
12.
H.
Kern
, P-and S-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure. In:
Schreyer
W
, editor.
High Pressure Res Geosci
Stuttgart
:
E. Schreizerbart’tsche Verlagsbuchhandlung
,
15
45
(
1982
).
13.
R. D.
Dwivedi
,
R. K.
Goel
,
V. V. R.
Prasad
 et al 
Thermo-mechanical properties of Indian and other granites
,
Int J Rock Mech Min Sci
,
45
,
303
315
(
2008
).
14.
S. J.
Matysiak
,
Wave fronts in elastic media with temperature dependent properties
,
Appl Sci Res
,
45
,
97
106
(
1988
).
15.
M.
Aouadi
and
A. S.
El-Karamany
,
Plane waves in generalized thermoviscoelastic material with relaxation time and temperature-dependent properties
,
J Therm Stresses
,
26
,
197
222
(
2003
).
16.
K.
Kimoto
and
S.
Hirose
,
A Green’s Function Boundary Element Method for SH-Wave Scattering in an Elastic Layer
,
AIP Conf. Proc.
,
700
,
118
125
(
2004
).
17.
P. C.
Pal
,
B.
Prasad
and
S.
Kumar
,
Reflection and transmission of SH-waves through a self-reinforced elastic layer embedded between two transversely isotropic inhomogeneous elastic half-spaces
.
Journal of the Geological Society of India 2016
; DOI:.
18.
C.
Smerzini
,
J.
Avilés
,
F. J.
Sánchez-Sesma
and
R.
Paolucci
,
Analytical solutions for the seismic response of underground structures under SH wave propagation
,
AIP Conf. Proc.
1020
,
674
683
(
2008
).
19.
S.
Mukhopadhyay
and
R
,
Kumar
,
Solution of a problem of generalized thermoelasticity of an annular cylinder with variable material properties by finite difference method
,
Comput Meth Sci Tech
,
15
,
169
176
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.