In this paper, first of all we introduce new notions of proximal contractions of kind-R and kind-M. Secondly, we prove the existence of a g-best proximity for a pair of maps alongwith introduced proximal contractions in complete metric spaces. Examples are also given to illustrate our results.

1.
Fan
,
K
:
Extensions of two fixed point theorems of F. E. Browder
.
Math. Z.
122
(
3
),
234
240
(
1969
).
2.
Akbar
,
A
,
Gabeleh
,
M
:
Proximal quasi-normal structure and a best proximity point theorem
.
J. Nonlinear Convex Anal.
14
(
4
),
653
659
(
2013
).
3.
Al-Thagafi
,
MA
,
Shahzad
,
N
:
convergence and existence results for best proximity points
.
Nonlinear Anal.
70
(
10
),
3665
3671
(
2009
).
4.
Di Bari
,
C
,
Suzuki
,
T
,
Vetro
,
C
:
Best proximity points for cyclic Meir-Keeler contractions
.
Nonlinear Anal.
69
(
11
),
3790
3794
(
2008
).
5.
Eldred
,
AA
,
Veeramani
,
P
:
Existence and convergence of best proximity points
.
J. Math. Anal. Appl.
323
(
2
),
1001
1006
(
2006
).
6.
Fernandez-Leon
,
A
:
Best proximity ponts for proximal contractions
(
2012
). arXiv: 1207.4349v1 [math.FA]
7.
Karpagam
,
S
,
Agrawal
,
S
:
Best proximity point theorems for p-cyclic Meir-Keeler contractions
.
Fixed Point Theory Appl.
2009, Article ID 197308(
2009
)
8.
Kirk
,
WA
,
Reich
,
S
,
Veeramani
,
P
:
Proximal retracts and best proximity pair theorems
.
Numer. Funct. Anal. Optim.
24
(
7-8
),
851
862
(
2003
).
9.
Sadiq Basha
,
S
:
Best proximity points: global optimal apprpximate solutions
.
J. Glob. Optim.
49
(
1
),
15
21
(
2011
).
10.
Sankar Raj
,
V
:
A best proximity point theorem for weakly contractive non-self-mappings
.
Nonlinear Anal.
74
(
14
),
4804
4808
(
2011
).
11.
Vetro
,
C
:
Best proximity points: convergence and existence theorems for p-cyclic mappings
.
Nonlinear Anal.
73
(
7
),
2283
2291
(
2010
).
12.
Khojasteh
,
F
,
Shukla
,
S
,
Radenovic
,
S
:
A new approach to the study of fixed point theorems via simulation functions
,
Filomat
29
(
6
),
1189
1194
(
2015
).
13.
Argoubi
,
H
,
Samet
,
B
,
vetro
,
C
:
Nonlinear contractions involving simulation functions in a metric space with a partial order
.
J. Nonlinear Sci. Appl.
8
(
6
),
1082
1094
(
2015
).
14.
Nastasi
,
A
,
Vetro
,
P
:
Fixed point results on metric and partial metric spaces via simulation functions
.
J. Nonlinear Sci. Appl.
8
(
6
),
1059
1069
(
2015
)
This content is only available via PDF.
You do not currently have access to this content.