A general methodology to obtain statistical material model parameters is presented. The procedure is based on the coupling of a stochastic simulation and an artificial neural network. The identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. The efficient small-sample simulation method Latin Hypercube Sampling is used for the stochastic preparation of the training set utilized in training the neural network. Once the network has been trained, it represents an approximation consequently utilized in a following way: To provide the best possible set of model parameters for the given experimental data. The paper focuses the attention on the statistical inverse analysis of material model parameters where statistical moments (usually means and standard deviations) of input parameters have to be identified based on experimental data. A hierarchical statistical parameters database within the framework of reliability software is presented. The efficiency of the approach is verifiedusing numerical example of fracture-mechanical parameters determination of fiber reinforced and plain concretes.

1.
L.
Ljung
,
System Identification – Theory For the User
, 2nd ed.,
PTR Prentice Hall, Upper Saddle River
,
N.J
. (
1999
).
2.
J.
Planas
,
G. V.
Guinea
and
M.
Elices
,
Size effect and inverse analysis in concrete fracture
.
International Journal of Fracture
, Vol.
95
, Kluwer Academic Publisher,
367
378
(
1999
).
3.
E. M. R.
Fairban
,
C. N. M.
Paz
,
N. F. F.
Ebecken
and
F. J.
Ulm
,
Use of neural networks for fitting of FE probabilistic scaling model parameters
.
International Journal of Fracture
,
95
,
315
324
(
1999
).
4.
C.
Iacono
,
L. J.
Sluys
and
J. G. M.
van Mier
, “Development of an inverse procedure for parameters estimates of numerical models”, In:
Proceedings of the Euro-C conference
(
St. Johann imPongau, Austria
,
2003
), pp.
259
268
.
5.
A.
Kučerová
,
M.
Lepš
and
J.
Zeman
, “Soft computing methods for estimation of microplane model parameters”, in
Computational Mechanics Conference
(WCCM VI in conjuction with APCOM´04, Sept. 5-10,
Beijing, China
,
Tsinghua University Press & Springer-Verlag
,
2004
).
6.
V.
Červenka
,
D.
Novák
,
D.
Lehký
and
R.
Pukl
, “Identification of shear wall failure mode”, in
CD-ROM proc. of 11th International Conference on Fracture
(
ICF XI
,
Torino, Italy
,
2005
), pp.
209
.
7.
D.
Novák
and
D.
Lehký
, “
ANN Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation
”,
Journal of Engineering Application of Artificial Intelligence
,
19
,
731
740
(
2006
).
8.
A.
Strauss
,
K.
Bergmeister
,
D.
Novák
and
D.
Lehký
, “
Stochastische Parameteridentifikation bei Konstruktions betonfür die Betonerhaltung
”,
Beton und Stahlbetonbau
, Vol.
99
, No.
12
,
967
974
(
2004
).
9.
D.
Lehký
and
D.
Novák
, “ANN Inverse Analysis in Stochastic Computational Mechanics”, in
Artificial Inteligence: New Research
, edited by
Berstein
,
R. B.
,
Curtis
,
W. N.
(
Nova Publisher
,
2009
), pp.
323
350
.
10.
D.
Novák
,
Z.
Keršner
,
D.
Lehký
,
L.
Řoutil
,
M.
Vořechovský
,
J.
Knězek
and
R.
Pukl
, “Virtual stochastic simulation of fiber reinforced concrete experiments”,
Proc. of 1st Central European Congress on Concrete Engineering
(
Graz, Austria
,
2005
), pp.
35
38
.
11.
F.
Tong
,
X.L.
Liu
, “
On training sample selection for artificial neural networks using number-the oretic methods
”,
Proceedings of 4th International conference on Enginering Computation Technology
, (
Lisbon
,
2004
), pp.
1
15
.
12.
D.
Lehký
,
Z.
Keršner
and
D.
Novák
, “
Framepid-3pb software for material parameter identification using fracture tests and inverse analysis
”,
Advances in Engineering Software
(
Elsevier
), Vol.
72
,
147
54
(
2014
).
13.
D.
Novák
,
M.
Vořechovský
and
R.
Rusina
,
FReET v.1.6 – program documentation, Useŕs and Theory Guides. Brno/Červenka Consulting
, www.freet.cz,
Czech Republic
(
2016
).
14.
D.
Novák
,
M.
Vořechovský
and
B.
Teplý
, “
FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module
”,
Advances in Eng. Software
,
72
,
179
192
, (
2014
).
15.
D.
Novák
,
L.
Řoutil
,
L.
Novák
,
O.
Slowik
,
A.
Strauss
and
B.
Krug
, “Database of fracture-mechanical concrete parameters and its implementation into reliability software FReET”, in
Proceedings of IPW2015 13th International Probabilistic Workshop
(
4 – 6 November 2015
,
Liverpool, Great Britain
,
2015
).
16.
V.
Červenka
,
L.
Jendele
, and
J.
Červenka
,
ATENA Program Documentation – Part 1: Theory
.
Prague: Cervenka
Consulting, Czech Republic
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.