In the global framework of finding an axiomatic derivation of nonequilibrium Statistical Mechanics from fundamental principles, such as the maximum path entropy – also known as Maximum Caliber principle –, this work proposes an alternative derivation of the well-known Jarzynski equality, a nonequilibrium identity of great importance today due to its applications to irreversible processes: biological systems (protein folding), mechanical systems, among others. This equality relates the free energy differences between two equilibrium thermodynamic states with the work performed when going between those states, through an average over a path ensemble.

In this work the analysis of Jarzynski’s equality will be performed using the formalism of inference over path space. This derivation highlights the wide generality of Jarzynski’s original result, which could even be used in non-thermodynamical settings such as social systems, financial and ecological systems.

1.
E. T.
Jaynes
,
Physical Review
106
,
620
630
(
1957
).
2.
E. T.
Jaynes
,
Ann. Rev. Phys. Chem.
31
,
579
601
(
1980
).
3.
S.
Pressé
,
K.
Ghosh
,
J.
Lee
, and
K. A.
Dill
,
Reviews of Modern Physics
85
,
1115
1141
(
2013
).
4.
S.
Davis
and
D.
González
,
J. Phys. A: Math. Theor.
48
, p.
425003
(
2015
).
5.
D.
González
,
D.
Díaz
, and
S.
Davis
,
Eur. Phys. J. B
89
, p.
214
(
2016
).
6.
D.
González
and
S.
Davis
,
AIP Conf. Proc.
1757
, p.
20003
(
2016
).
7.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
8.
C.
Bustamante
,
J.
Liphardt
, and
F.
Ritort
,
Physics Today
58
, p.
43
(
2005
).
9.
G.
Hummer
and
A.
Szabo
,
Proc. Nac. Acad. Sci. USA
98
, p.
3658
(
2001
).
10.
J.
Liphardt
,
S.
Dumont
,
S. B.
Smith
, I. T. Jr., and
C.
Bustamante
,
Science
296
, p.
1832
(
2002
).
11.
A. B.
Adib
,
Phys. Rev. E
71
, p.
056128
(
2005
).
12.
D. S.
Sivia
and
J.
Skilling
,
Data Analysis: A Bayesian Tutorial
(
Oxford University Press
,
2006
).
13.
H.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
(
Wiley
,
1985
).
14.
D. J. C.
MacKay
,
Information Theory, Inference and Learning Algorithms
(
Cambridge University Press
,
2003
).
15.
S.
Davis
,
J.
Peralta
,
Y.
Navarrete
,
D.
González
, and
G.
Gutiérrez
,
Found. Phys.
46
,
350
359
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.