Bacterial cellulose (BC) based hydrogels (BC-PVP and BC-CMC) are modified with β-tri-calcium phosphate (β-TCP) and hydroxyapatite (HA) to improve the structural and functional properties of the existing hydrogel scaffolds. The modified hydrogels are then biomineralized with CaCO3 following liquid diffusion technique, where salt solutions of Na2CO3 (5.25 g/100 mL) and CaCl2 (7.35 g/100 mL) were involved. The BC-PVP and BC-CMC are being compared with the non-mineralized (BC-PVP-β-TCP/HA and BC-CMC-β-TCP/HA) and biomineralized (BC-PVP-β-TCP/HA-CaCO3 and BC-CMC-β-TCP/HA-CaCO3) hydrogels on the basis of their structural and rheological properties. The Fourier Transform Infrared (FTIR) spectral analysis demonstrated the presence of BC, CMC, PVP, β-TCP, HA in the non-mineralized and BC, CMC, PVP, β-TCP, HA and CaCO3 in the biomineralized samples. Interestingly, the morphological property of non-mineralized and biomineralized, hydrogels are different than that of BC-PVP and BC-CMC based novel biomaterials. The Scanning Electron Microscopic (SEM) images of the before mentioned samples reveal the denser structures than BC-PVP and BC-CMC, which exhibits the changes in their pore sizes. Concerning rheological analysis point of view, all the non-mineralized and biomineralized hydrogel scaffolds have shown significant elastic property. Additionally, the complex viscosity (η*) values have also found in decreasing order with the increase of angular frequency (ω) 0.1 rad.sec−1 to 100 rad.sec−1. All these BC based hydrogel scaffolds are elastic in nature, can be recommended for their application as an implant for bone tissue engineering.

1.
N.
Roy
,
N.
Saha
,
T.
Kitano
and
P.
Saha
,
AIP Conference Proceedings
1152
,
210
216
(
2009
).
2.
N.
Saha
,
R.
Vyroubal
,
R.
Shah
,
T.
Kitano
and
P.
Saha
,
AIP Conference Proceedings
1526
,
301
309
(
2013
).
3.
L.
Weng
,
X.
Chen
and
W.
Chen
,
Biomacromolecules
8
,
1109
1115
(
2007
).
4.
T.
Oikawa
,
T.
Morino
and
M.
Ameyama
,
Biosci. Biotechnol. Biochem.
59
,
1564
1565
(
1995
).
5.
R.
Shah
,
R.
Vyroubal
,
H.
Fei
,
N.
Saha
,
T.
Kitano
and
P.
Saha
,
AIP Conference Proceedings
1662
,
040007
(
2015
).
6.
M.
Pawlikowski
,
Archive of Mechanical Engineering
,
LIX
(
1
),
31
51
(
2012
).
7.
R.
Shah
,
N.
Saha
,
Z.
Kucekova
,
P.
Humpolicek
and
P.
Saha
,
Int. J. Polym. Mat. Polym. Biomat.
65
,
619
628
(
2016
).
8.
V
Keskar
,
NW
Marion
,
JJ
Mao
,
RA.
Gemeinhart
,
Tissue Engineering Part A.
15
(
7
),
1695
1707
(
2009
).
9.
R.
Meena
,
R.
Lehnen
and
B.
Saake
,
Cellulose
21
,
553
568
(
2014
).
10.
H. V.
Chavda
,
R. D.
Patel
,
I. P.
Modhia
and
C. N.
Patel
,
Int. J. Pharmaceut. Inv.
2
,
134
138
(
2012
).
11.
G.
Leone
,
M.
Consumi
,
G.
Greco
,
C.
Bonechi
,
S.
Lamponi
,
C.
Rossi
and
A.
Magnani
,
J. Biomedic. Mat. Research B: App. Biomat.
97b
,
278
288
(
2011
).
12.
P.
Gao
,
H.
Zhang
,
Y.
Liu
,
B.
Fan
,
X.
Li
,
X.
Xiao
 et al,
Scientific Reports
6
(
23367
),
1
14
(
2016
).
13.
T.
Nonoyama
,
H.
Ogasawara
,
M.
Tanaka
,
M.
Higuchi
and
T.
Kinoshita
,
Soft Matter
8
,
11531
(
2012
).
14.
X.
Struillou
,
M.
Rakic
,
Z.
Badran
,
L.
Macquigneau
,
C.
Colombeix
,
P.
Pilet
,
C.
Verner
,
O.
Gauthier
,
P.
Weiss
and
A.
Soueidan
,
J. Mater. Sci.: Mater. Med.
24
,
2749
2760
(
2013
).
15.
N.
Roy
,
N.
Saha
,
T.
Kitano
and
N.
Saha
,
J. App. Polym. Sci.
117
,
1703
1710
(
2010
).
16.
M. W.
Rauch
,
M.
Dressler
,
H.
Scheel
,
D. V.
Opdenbosch
and
C.
Zollfrank
,
Eur. J. Inor. Chem.
32
,
5192
5198
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.