This work presents a brief introduction to fractional calculus and its application to some problems in rheology. We present two different viscoelastic models based on fractional derivatives (the Fractional Maxwell Model – FMM and the Fractional Viscoelastic Fluid – FVF) and discuss their reduction to the classical Newtonian and Maxwell fluids. A third model is also studied (an extension of the FMM to an invariant form), being given by a combination of the K-BKZ integral model with a fractional memory function which we denote the Fractional K-BKZ model. We discuss and illustrate the ability of these models to fit experimental data, and present numerical results for simple stress relaxation following step strain and steady shearing.

1.
I.
Podlubny
,
Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
(
Academic press
,
1998
).
2.
A.
Jaishankar
,
G.H.
McKinley
,
Journal of Rheology
58
1751
1788
(
2014
).
3.
R.B.
Bird
,
R.C.
Armstrong
,
O.
Hassager
,
Dynamics of Polymeric Liquids
.
Fluid Mechanics
, second ed., (
Wiley
,
1987
).
4.
B.
Keshavarz
,
T.
Divoux
,
S.
Manneville
,
G.H.
McKinley
, accepted for publication in Physical Review Letters (
2016
).
5.
T.S.-K.
Ng
,
G.H.
McKinley
,
M.
Padmanabhan
,
Appl Rheol
16
265
274
(
2006
).
6.
M.
Caputo
,
Geophys. J. Int.
13
529
539
(
1967
).
7.
H.
Schiessel
,
R.
Metzler
,
A.
Blumen
,
T.F.
Nonnenmacher
,
Journal of physics A: Mathematical and General
28
6567
6584
(
1995
).
8.
C.
Friedrich
,
Rheologica Acta
30
151
158
(
1991
).
9.
H.
Schiessel
,
A.
Blumen
,
J-Phys. A: Math. Gen.
26
5057
5069
(
1993
).
10.
G.W.S
Blair
,
B.C.
Veinoglou
,
J.E.
Caffyn
,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
189
69
87
(
1947
).
11.
R. C.
Koeller
,
J. Appl. Mech.
51
299
307
(
1984
).
12.
R.B.
Bird
,
R.C.
Armstrong
,
O.
Hassager
,
Dynamics of polymeric liquids Vol. 1: Fluid mechanics
(
New York
,
Wiley
,
1987
).
13.
P.
Yang
,
Y. Cheong
Lam
,
K.-Q.
Zhu
,
J. Non-Newt. Fluid Mech.
165
88
97
(
2010
).
14.
A. D.
Freed
,
K.
Diethelm
,
Biomechan Model Mechanobiol
5
203
215
(
2006
).
15.
B.
Bernstein
,
E. A.
Kearsley
,
L.J.
Zapas
,
Transactions of The Society of Rheology
7
391
410
(
1963
).
16.
M. H.
Wagner
,
Rheologica Acta
15
136
142
(
1976
).
17.
M. H.
Wagner
,
T.
Raible
, and
J.
Meissner
,
Rheologica Acta
18
427
428
(
1979
).
18.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
Boston
,
1988
).
19.
D. D.
Joseph
,
International Symposium on Viscoelastic Fluids
,
Tobago
,
West Indies
,
1994
.
20.
M.
Ansari
,
S.G.
Hatzikiriakos
,
E.
Mitsoulis
,
J. Non-Newtonian Fluid Mech.
167-168
18
29
2012
.
21.
E.
Mitsoulis
,
International Scholarly Research Notices - Polymer Science 2013
(
2013
).
22.
T.
Papanastasiou
,
G.
Georgiou
,
A.N.
Alexandrou
,
Viscous fluid flow
, (
CRC Press
,
1999
).
23.
L.L.
Ferrás
,
N.J.
Ford
,
M.L.
Morgado
,
M.
Rebelo
,
G.H.
McKinley
,
J.M.
Nóbrega
(submitted to Applied Mathematical Modelling).
24.
E.A.J.F.
Peters
,
M.A.
Hulsen
,
B. H. A. A.
van den Brule
,
J. Non-Newtonian Fluid Mech.
89
209
228
(
2000
).
25.
L.L.
Ferrás
,
N.J.
Ford
,
M.L.
Morgado
,
M.
Rebelo
,
G.H.
McKinley
,
J.M.
Nóbrega
(to be submitted to Applied Mathematical Modelling).
This content is only available via PDF.
You do not currently have access to this content.