Camphor is a renewable carbon source that can be used as raw material for synthesizing Carbon Nanotube (CNT). Camphor is a substance that can be found on the Cinnamomum camphora tree. In this research, the method used to synthesize Aligned Carbon Nanotube (ACNT) from camphor is Floating Catalyst Chemical Vapor Deposition (FC-CVD) with Ferrocene as catalyst at temperature of 800°C, hydrogen gas as the co-reactant and argon gas as carrier gas. This method is the most popular method of synthesizing ACNT which oriented and have a high density. Camphor decomposes into benzene, toluene, and xylene at a temperature of 800°C. By using GC-FID for characterization test, the results showed decomposition at a temperature of 800°C camphor dominated by benzene with a concentration of 92.422 to 97.656%. The research was conducted by varying the flow rate of carrier gas such as argon at 40, 55, 70, 85 and 100 mL / min at a temperature of 800°C for 60 minutes of reaction time. Argon carrier gas flow rate of 70 mL / min producing CNT with the highest yield, but this is not followed by best quality of CNT. CNT with best quality is obtained at a flow rate of argon carrier gas at 55 mL / min based on test results characterization by using SEM, EDX, Mapping, and RAMAN Spectroscopy. This research have not obtained CNT with aligned structured.

1.
Asli
,
N.A.
,
Shamsudin
,
M.S.
,
Suriani Abu
Bakar
. (
2013
).
Effect of The Ratio of Catalyst to Carbon Source on The Growth of Vertically Aligned Carbon Nanotubes on Nanostructured Porous Silicon Templates
.
International Journal of Industrial Chemistry (IJIC)
,
4
,
23
.
2.
Cao
,
A.X.F
,
Zhang
,
C.L.
,
Xu
,
J.
,
Liang
,
D.H.
(
2001
).
Aligned CarbonNanotube Growth Under Oxidative Ambient
.
J Mater Res.
,
16
,
11
,
3107
10
.
3.
Castro
,
C.
,
Pinault
,
M.
,
Portreat
,
D.
,
Reynaud
,
C.C.
&
Mayne-L’hermite
,
M.
(
2013
).
The Role of Hydrogen in The Aerosol-Assisted Chemical Vapor Deposition Process in Producing Thin and Densly Packed Vertically Aligned Carbon Nanotubes
.
Carbon
,
61
,
585
594
.
4.
Hata
,
K.
,
Futaba
,
N.D.
,
Kohei
,
Mizuno.
,
Namai
,
T.
,
Yumura
,
M.
, &
Sumio
Iijima
. (
2004
).
Water-Assisted Highly Efficient Synthesis Of Impurity-Free Single-Walled Carbon Nanotubes
.
Science
,
306
,
1362
1364
.
5.
Huang
,
Z.P.
,
D.Z.
Wang
.,
J.G.
Wen
.,
M.
Sennett
,
H.
Gibson
, &
Z.F.
Ren
. (
2002
).
Effect Of Nickel, Iron And Cobalt On Growth Of Aligned Carbon Nanotube
.
Appl. Phys. A
,
74
,
387
391
.
6.
Huang
,
S.
,
Cai
,
X.
,
Liu
,
J.
(
2003
).
Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes using Fast-Heating Chemical Vapor Deposition Process
.
Nano Lett
,
4
,
6
,
1025
8
.
7.
Huang
,
S.
,
Woodson
,
M.
,
Smalley
,
R.
,
Liu
,
J.
(
2004
).
Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes on Flat Substrates
.
J ACS
,
125
,
19
,
5636
7
.
8.
Khorrami
,
S.
(
2013
).
Influence Of Carrier Gas Flow Rate On Carbon Nanotubes Growth By TVCD With Cu Catalyst
.
JSCS
,
562
,
1
5
.
9.
Kumar
,
M.
,
Ando
,
Yoshinori
. (
2003
).
A Simple Method Of Producing Aligned Carbon Nanotube From An Unconventional Precursor – Camphor
.
Chem. Phys. Lett.
,
374
,
5–6
,
521
6
.
10.
Kumar
,
M.
,
Ando
,
Yoshinori
. (
2007
).
Carbon Nanotubes from Camphor : An Environment-Friendly Nanotechnology
.
Journal of Physics : Conference Series
,
61
,
643
646
.
11.
Kumar
,
M.
,
Ando
,
Yoshinori
. (
2010
).
Chemical Vapor Deposition of Carbon Nanotube: A Review on Growth Mechanism and Mass Production
.
Journal of Nanoscience and Nanotechnology
, Vol.
10
,
3739
3758
.
12.
Merkulov
,
V.
,
D.K.
Hensley
.,
A.V.
Melechko
.,
M.A.
Guillorn
.,
D.H.
Lowndes
.,
M.L.
Simpson
. (
2002
).
Control Mechanisms for the Growth of Isolated Vertically Aligned Carbon Nanofibers
.
J. Phys. Chem. B.
No.
106
. Vol.
41
.,
10570
10577
.
13.
Mubarak
,
N.M.
,
Abdullah
,
E.C.
,
Jayakumar
,
N.S.
,
Sahu
,
J.N.
(
2013
).
An Overview On Methods For The Production Of Carbon Nanotubes
.
Journal of Industrial and Engineering Chemistry
. Vol.
20
,
1186
1197
.
14.
Mulyanti
,
B.
,
F.S.
Arsyad
,
Soegianto
,
S.
,
M.
Barmawi
, &
Sri
Jatno
. (
2002
).
Simulasi Numerik Reaktor MOCVD dengan Menggunakan FEMLAB
.
Kontribusi Fisika Indonesia
, Vol.
13
,
2
,
1
6
.
15.
Pint
,
C.L.
,
Nicholas
,
N.
,
Pheasant
,
S.T.
,
Duque
,
J.G.
,
Parra-Vasquez
,
A.N.G.
, &
Eres
,
G.
(
2008
).
Temperature and Gas Pressure Effects in Vertically Aligned Carbon Nanotube Growth from Fe-Mo Catalyst
.
J. Phys. Chem.
,
112
,
36
,
14041
51
.
16.
Rao
,
C.N.R.
,
R.
Sen
,
B.C.
Satishkumar
, &
A.
Govindaraj
. (
1998
).
Large Aligned-Nanotube Bundles From Ferrocene Pyrolysis
.
Chem Commun
,
15
,
1525
1526
.
17.
Rao
,
C.N.R.
, &
A
,
Govindaraj
. (
2002
).
Carbon Nanotube From Organometallic Precursors
.
Acc. Chem. Res.
,
35
,
12
,
998
1007
.
18.
Ren
,
Z.
 et al, (
1998
).
Synthesis Of Large Arrays Of Well-Aligned Carbon Nanotubes On Glass
.
Science
,
228
,
1105
1107
.
19.
Satishkumar
,
B.C.
,
A.
Govindaraj
, &
C.N.R.
Rao
. (
1999
).
Bundles Of Aligned Carbon Nanotube Obtained By The Pyrolysis Of Ferrocene–Hydrocarbon Mixtures: Role Of The Metal Nanoparticles Produced In Situ
.
Chemical Physics Letters
,
307
,
158
162
.
20.
Seah
,
Choon-Ming
,
Chai
,
Siang-Piao
, &
Mohamed
,
Abdul
Rahman
. (
2011
).
Synthesis of Aligned Carbon Nanotube
.
Carbon
,
49
,
4613
4635
.
21.
Szabó
,
A.
,
Perri
,
C.
(
2010
).
Syntesis Methods Of Carbon Nanotubes And Related Materials
.
MDPI
,
3
,
3092
3140
.
22.
Thess
,
A.
,
Lee
,
R.
,
Nikolaev
,
P.
,
Hongjie
,
D.
(
1996
).
Crystalline Ropes Of Metallic Carbon Nanotubes
.
Science
,
273
,
5274
,
483
487
.
23.
Wulan
,
Praswasti
P.D.K.
,
Purwanto
,
Widodo
Wahyu
,
Sudibandriyo
,
Mahmud
. (
2015
).
Synthesis Of Aligned Carbon Nanotube (ACNT) Through Catalytic Decomposition Of Methane By Water Assisted Chemical Vapor Deposition (WA-CVD
).
International Journal Of Technology
,
1119
1127
.
24.
Wang
,
X.
,
Liu
,
Y.
, &
Zhu
,
D.
(
2001
).
Controlled Growth Of Well-Alignedcarbon Nanotube With Large Diameters
.
Chem. Phys. Lett.
,
340
,
5–6
,
419
24
.
25.
Yang
,
X.
,
Yuan
,
L.
,
Vanessa
,
K.P.
,
Yin
,
Y.
,
Andrew
,
I.M.
, &
Andrew
,
T.H.
(
2011
).
Open-Ended Aligned Carbon Nanotube Arrays Produced Using CO2-Assisted Floating-Ferrocene Chemical Vapor Deposition
.
J. Phys. Chem.
,
115
,
14093
14097
.
26.
Zhang
,
X. F.
(
2002
).
Rapid Growth Of Well-Aligned Carbon Nanotube Arrays
.
Chem. Phys. Lett.
,
362
,
3–4
,
285
90
.
27.
Zhang
,
W.D.
,
Y.
Wen
,
S.M.
Liu
,
W.C.
Tjiu
,
G.Q.
Xu
, &
L.M.
Gan
. (
2002
).
Synthesis Of Vertically Aligned Carbon Nanotube On Metal Deposited Quartz Plates
.
Carbon
,
40
,
1981
1989
.
28.
Zhang
,
Q.
,
Huang
,
Jia-Qi
,
Zhao
,
Meng-Qiang
,
Qian
,
Wei-Zhong
,
Wang
,
Yao
, &
Wei
,
Fei
. (
2008
).
Radial Growth Of Vertically Aligned Carbon Nanotube Arrays From Ethylene On Ceramic Spheres
.
Carbon
,
46
,
8
,
1152
8
.
29.
Zhang
,
Q
,
Huang
,
Jia-Qi
,
Zhao
,
Meng-Qiang
,
Qian
,
Wei-Zhong
, &
Wei
,
Fei
. (
2009
).
Modulating The Diameter Of Carbon Nanotubes in Array Form via Floating Catalyst Chemical Vapor Deposition
.
Appl. Phys. A.
,
94
,
853
860
.
30.
Zhang
,
K.
,
Matthew
M.F.
,
Yuen
,
N.
Wang
,
David
G.W.
Xiao
, &
H.B.
Fan
. (
2011
).
Thermal Interface Material With Aligned CNT And Its Application In HB-LED Packaging
.
Electronics Components and Technology Conference
This content is only available via PDF.
You do not currently have access to this content.