In conjunction with the development of fractional calculus, conformable derivatives and integrals has been widely used a number of scientific areas. In this talk, we provide a numerical scheme to solve Katugampola conformable fractional differential equations via radial basis function (RBF) collocation technique. In order to confirm our numerical scheme, we present some numerical experiments results.

1.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
, Vol.
204
(
Elsevier Science Inc.
,
New York, NY, USA
,
2006
).
2.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
, (
Gordon and Breach Science Publishers
,
Switzerland, Philadelphia, Pa., USA
,
1993
).
3.
T.
Abdeljawad
,
Journal of Computational and Applied Mathematics
279
,
57
66
(
2015
).
4.
R.
Khalil
,
M. A.
Horani
,
A.
Yousef
, and
M.
Sababheh
,
Journal of Computational and Applied Mathematics
264
,
65
70
(
2014
).
5.
U.
Katugampola
, arXiv:1410.6535v2 (
2014
).
6.
E. J.
Kansa
,
Computers and Mathematics with Applications
19
(
8-9
),
127
145
(
1990
).
7.
E. J.
Kansa
,
Computers and Mathematics with Applications
19
(
8-9
),
147
161
(
1990
).
8.
C.
Franke
and
R.
Schaback
,
Applied Mathematics and Computation
93
,
73
82
(
1998
).
9.
M. D.
Buhmann
,
Cambridge monographs on applied and computational mathematics
(
Cambridge University Press
,
Cambridge, New York
,
2003
).
10.
E.
Cheney
and
W.
Light
,
Graduate studies in mathematics
(
American Mathematical Soc
.).
This content is only available via PDF.
You do not currently have access to this content.