Aluminium foam is a kind of metal foam material which has large energy absorption capability. The mechanical properties of aluminium foam material in high strain rates could be measured by using SHPB. Numerical simulation is used as the initial step to measure mechanical properties of this material. MAT 163 modified crushable foam used as material model in the SHPB numerical simulation of aluminium foam. Numerical simulation showed a quite close results to experimental data.
REFERENCES
1.
A.G.
Hanssen
, O.S.
Hopperstad
, M.
Langseth
, H.
Ilstad
, “Validation of constitutive models applicable to aluminium foams
”, 2002
, International Journal of Mechanical Sciences
44
, pp. 359
–406
.2.
W.
Chen
, B.
Song
, “Split Hopkinson (Kolsky) Bar Design, Testing, and Aplications”, 2011
, Springer
.3.
V.
Deshpande
, N.
Fleck
, “High strain-rate compressive behavior of aluminium alloy foams
”, 2000
, International Journal of Impact Engineering
24
, pp. 277
–298
4.
K.A.
Dannemann
, J.
Lankford
, “High strain-rate compression of closed-cell aluminium foams
”, 2000
, Mater Sci Eng A
239
, pp. 157
–64
.5.
S.
Kiernan
, L.
Cui
, M.
Gilchrist
, “Propagation of a stress wave trough a virtual functionally graded foam
”, 2009
, International Journal Non-Linear Mech
44
, pp. 456
–68
.6.
Afdhal
, L.
Gunawan
, S.P.
Santosa
, I.S.
Putra
, H.
Huh
, “Measurement of Mechanical Properties of St 37 Material at High Strain Rates Using a Split Hopkinson Pressure Bar
”, 2014
, Applied Mechanics and Material
.7.
I.
Irausquin
, J.L.
Perez-Castellanos
, V.
Miranda
, F.
Teixeira-Dias
, “Evaluation of the effect of strain rate on the compressive response of a closed-cell aluminium foam using SHPB test
”, 2013
, Material and Design
47
, pp. 698
–705
.8.
B.
Song
, W.
Chen
, “One-dimensional dynamic compressive behavior of EPDM rubber
”, 2003
, Journal of Engineering Materials and Technology
125
, pp. 294
–301
.9.
R. M.
Davies
, “A Critical Study of the Hopkinson Pressure Bar
”, 1948
, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
.10.
P.S.
Follansbee
, “The Hopkinson Bar”, 1985
, in: J.R.
Newby
(Ed.), Metals Handbook
, Vol. 8
Mechanical Testing, American Society for Metals
, Metals Park, Ohio
.11.
M. A.
Kariem
, “Reliable Materials Preformance Data From Impact Testing
”, 2012
, PhD Dissertation, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology
.12.
W.
Chen
, B.
Zhang
, M.
Forrestal
, “A split Hopkinson bar technique for low impedance materials
”, 1999
, Experimental Mechanics
39
, pp. 81
–85
.13.
T.
Mukai
, K.
Kanahashi
, T.
Miyoshi
, M.
Mabuchi
, T.
Nieh
, K.
Higashi
, “Experimental study of energy absorption in a close-celled aluminium foam under dynamic loading
, 1999
, Scripta Material
40
, pp. 921
–927
.14.
LSTC
, “LS-DYNA Keyword User’s Manual”, 2007
, Livermore
, LSTC
.15.
LSTC
, “LS-DYNA Keyword User’s Manual Vol.II Material Models”, 2015
, Livermore
, LSTC
.16.
J.
Lankford
, Jr., A.E.
Nicholls
, K.A.
Dannemann
, “Dynamic compressive behavior of closed-cell aluminium foams
”, ICF 100580OR
.17.
S.P.
Santosa
, T.
Wierzbicki
, A.G.
Hanssen
, M.
Langseth
, “Experimental and numerical studies of foam-filled sections
, 2000
, International Journal of Impact Engineering
24
, pp. 509
–534
.18.
L.
Gibson
, M.F.
Asby
, “Cellular Solids: structure and properties”, 1997
, Cambridge Univ. Press
, Cambridge, UK
.
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.