Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician’s decision making, individual’s behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

1.
P. W.
Wilson
,
R. B.
D’Agostino
,
D.
Levy
, a
M.
Belanger
,
H.
Silbershatz
, and
W. B.
Kannel
, “
Prediction of coronary heart disease using risk factor categories
.,”
Circulation
, vol.
97
, no.
18
, pp.
1837
1847
,
1998
.
2.
J.
Liu
,
P. W. F.
Wilson
, and
W. B.
Kannel
, “
Predictive Value for the Chinese Population of the Framingham CHD Risk Assessment Tool Compared With the Chinese
,”
J. Am. Med. Assoc.
, vol.
291
, no.
21
, pp.
2591
2599
,
2004
.
3.
W. E.
Barlow
,
E.
White
,
R.
Ballard-Barbash
,
P. M.
Vacek
,
L.
Titus-Ernstoff
,
P. a.
Carney
,
J. a.
Tice
,
D. S. M.
Buist
,
B. M.
Geller
,
R.
Rosenberg
,
B. C.
Yankaskas
, and
K.
Kerlikowske
, “
Prospective breast cancer risk prediction model for women undergoing screening mammography
,”
J. Natl. Cancer Inst.
, vol.
98
, no.
17
, pp.
1204
1214
,
2006
.
4.
A
Cassidy
,
J. P.
Myles
,
M.
van Tongeren
,
R. D.
Page
,
T.
Liloglou
,
S. W.
Duffy
, and
J. K.
Field
, “
The LLP risk model: an individual risk prediction model for lung cancer
.,”
Br. J. Cancer
, vol.
98
, no.
2
, pp.
270
276
,
2008
.
5.
G. S.
Collins
,
S.
Mallett
,
O.
Omar
, and
L.-M.
Yu
, “
Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting
,”
BMC Med.
, vol.
9
, no.
1
, p.
103
,
2011
.
6.
M.
King
,
L.
Marston
,
I.
Švab
,
H. I.
Maaroos
,
M. I.
Geerlings
,
M.
Xavier
,
V.
Benjamin
,
F.
Torres-Gonzalez
,
J. A.
Bellon-Saameno
,
D.
Rotar
,
A.
Aluoja
,
S.
Saldivia
,
B.
Correa
, and
I.
Nazareth
, “
Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: The predictAL study
,”
PLoS One
, vol.
6
, no.
8
, pp.
1
10
,
2011
.
7.
J.
Hippisley-Cox
and
C.
Coupland
, “
Development and validation of risk prediction algorithm (QThrombosis) to estimate future risk of venous thromboembolism: prospective cohort study
.,”
BMJ
, vol.
343
, p.
d4656
,
2011
.
8.
K. G. M.
Moons
,
a. P.
Kengne
,
M.
Woodward
,
P.
Royston
,
Y.
Vergouwe
,
D. G.
Altman
, and
D. E.
Grobbee
, “
Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker
,”
Heart
, vol.
98
, no.
9
, pp.
683
690
,
2012
.
9.
K. G. M.
Moons
,
a. P.
Kengne
,
D. E.
Grobbee
,
P.
Royston
,
Y.
Vergouwe
,
D. G.
Altman
, and
M.
Woodward
, “
Risk prediction models: II. External validation, model updating, and impact assessment
,”
Heart
, vol.
98
, no.
9
, pp.
691
698
,
2012
.
10.
T.
Myojin
,
K.
Azuma
,
J.
Okumura
, and
I.
Uchiyama
, “
Future Trends of Mesothelioma Mortality in Japan Based on a Risk Function
,”
Industrial Health
, vol.
50
. pp.
197
204
,
2012
.
11.
S. a
Choudhry
,
J.
Li
,
D.
Davis
,
C.
Erdmann
,
R.
Sikka
, and
B.
Sutariya
, “
A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
.,”
Online J. Public Health Inform.
, vol.
5
, no.
2
, p.
219
,
2013
.
12.
E. W.
Steyerberg
and
Y.
Vergouwe
, “
Towards better clinical prediction models: Seven steps for development and an ABCD for validation
,”
Eur. Heart J.
, vol.
35
, no.
29
, pp.
1925
1931
,
2014
.
13.
I.
Ahmed
,
T. P. a
Debray
,
K. G. M.
Moons
, and
R. D.
Riley
, “
Developing and validating risk prediction models in an individual participant data meta-analysis
.,”
BMC Med. Res. Methodol.
, vol.
14
, no.
1
, p.
3
,
2014
.
14.
K.
Ks
,
B.
Rm
, and
M.
Walter
, “
Development of a disease risk prediction model for downy mildew (Peronospora sparsa) in boysenberry
.,”
Phytopathology
, vol.
104
, no.
1
, pp.
50
56
,
2014
.
15.
C.
O’Mahony
,
F.
Jichi
,
M.
Pavlou
,
L.
Monserrat
,
A.
Anastasakis
,
C.
Rapezzi
,
E.
Biagini
,
J. R.
Gimeno
,
G.
Limongelli
,
W. J.
McKenna
,
R. Z.
Omar
, and
P. M.
Elliott
, “
A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD
).,”
Eur. Heart J.
, vol.
35
, no.
30
, pp.
2010
20
,
2014
.
16.
P. M.
Ravdin
and
G. M.
Clark
, “
A practical application of neural network analysis for predicting outcome of individual breast cancer patients
,”
Breast Cancer Res. Treat.
, vol.
22
, pp.
285
293
,
1992
.
17.
A. A.
El-solh
,
C.
Hsiao
,
S.
Goodnough
,
J.
Serghani
, and
B. J. B.
Grant
, “
Tuberculosis Using an Artificial Neural Network *
,”
Chest
, vol.
116
, pp.
968
973
,
1999
.
18.
G.
Varela
,
G.
Santos-garcı
,
N.
Novoa
, and
M. F.
Jime
, “
Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble
,”
Artif. Intell. Med.
, vol.
30
, pp.
61
69
,
2004
.
19.
M.
Hossien
,
M.
Farhadian
,
M.
Aliabadi
,
S.
Musavi
, and
M.
Jalali
, “
Prediction of workers pulmonary disorder exposed to silica dust in stone crushing workshops using logistic regression and artificial neural networks techniques
,”
Jundishapur J. Heal.
, vol.
5
, no.
2
, pp.
141
148
,
2013
.
This content is only available via PDF.
You do not currently have access to this content.