This article investigates a function f(x), constructed from the Nikol’skii class in S2. The estimation obtained will show that the Riesz mean of the spectral expansions is unable to be strengthened due to absence of localization caused by a singualrity at a definite point f(x), on the sphere.

1.
S. A.
Alimov
,
Differential Equations
10
,
744
746
(
1974
).
2.
A. K.
Pulatov
,
Mathematical Notes of the Academy of Sciences of the USSR
22
,
517
523
(
1977
).
3.
V. V.
Khocholava
,
Bulletin of the Academy of Sciences of the Georgian SSR
93
,
33
36
(
1979
).
4.
T. H.
Gronwall
,
Math. Ann.
75
,
321
375
(
1914
).
5.
E.
Kogbetliantz
,
J. Math. Pures Appl.
9
,
107
187
(
1924
).
6.
A. K.
Pulatov
,
Mathematical Notes of the Academy of Sciences of the USSR
14
,
1076
1080
(
1978
).
7.
A. K.
Pulatov
,
Doklady Akademii Nauk SSSR
258
,
554
556
(
1981
).
8.
S. A.
Alimov
and
A. A.
Rakhimov
,
Differential Equations
32
,
798
802
(
1996
).
9.
S. A.
Alimov
,
Dokl. Akad. Nauk SSSR.
222
,
521
522
(
1975
).
10.
A. A.
Rakhimov
, “Localization of spectral expansions,” in
International training-seminars on mathematics
(
2011
).
11.
A. A.
Rakhimov
, “On the uniform convergence of the eigenfunction expansions,” in
Journal of Physics: Conference Series
, Vol.
435
(
IOP Publishing
,
UK
,
2013
) p.
012010
.
12.
A. A.
Ahmedov
,
Journal of Mathematical Analysis and Applications
56
,
310
321
(
2009
).
13.
A. A.
Ahmedov
,
A. F. N.
Rasedee
, and
A. A.
Rakhimov
,
Malaysian Journal of Mathematical Sciences
7
,
315
326
(
2013
).
14.
A. A.
Ahmedov
and
A. F. N.
Rasedee
,
Malaysian Journal of Mathematical Sciences
9
,
337
348
(
2015
).
15.
A. F. N.
Rasedee
, “
Spectral expansions of Laplace-Beltrami operator on unit sphere
,” Ph.D. thesis,
University Putra of Malaysia
,
Selangor, Malaysia
2015
.
This content is only available via PDF.
You do not currently have access to this content.