In this paper, we introduce a quadratic stochastic operators on the set of all probability measures of a measurable space. We study the dynamics of the Lebesque quadratic stochastic operator on the set of all Lebesque measures of the set [0,1] and prove the regularity of the Lebesque quadratic stochastic operators.

1.
S. N.
Bernstein
,
Uchn. Zapiski. NI Kaf. Ukr. Otd. Mat.
1
,
83
115
(
1924
).
2.
H.
Kesten
,
Adv. App. Prob.
2
,
1
82
(
1970
).
3.
Yu.
Lyubich
,
Mathematical Structures in Population Genetics
(
Springer-Verlag
,
Berlin
,
1992
).
4.
S.
Ulam
,
A collection of mathematical problems
(
New-York-London
1960
).
5.
N.
Ganikhodjaev
,
R.
Ganikhodjaev
and
U.
Jamilov
,
Ergodic Theory and Dynamical Systems
35
(
5
),
1443
1473
(
2015
).
6.
N.
Ganikhodjaev
,
M.
Saburov
and
U.
Jamilov
App Math Info Sci
7
,
1721
1729
(
2013
).
7.
N.
Ganikhodjaev
,
M.
Saburov
and
A.M.
Nawi
,
The Scientific World Journal
,
1
11
(
2014
).
8.
N.
Ganikhodjaev
and
D.
Zanin
,
Russian Math. Surveys
59
(
3
),
571
572
(
2004
).
9.
M.
Zakharevich
,
Russian Math.Surveys
33
(
6
),
265
266
(
1978
).
10.
R.
Ganikhodzhaev
,
F.
Mukhamedov
and
U.
Rozikov
,
Infinite Dimensional Analysis, Quantum Probability and Related Topics
14
(
2
),
279
335
(
2011
).
11.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
,
The Scientific World Journal
, (
2014
).
12.
R.
Ganikhodzhaev
,
Math. Notes
56
(
5-6
),
1125
1131
(
1994
).
13.
R.
Ganikhodzhaev
,
Acad. Sci. Sb.Math.
76
(
2
),
489
506
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.