Option prices contain crucial information that can be used as a reflection of future development of an underlying assets’ price. The main objective of this study is to extract the risk-neutral density (RND) and the risk-world density (RWD) of option prices. A volatility function technique is applied by using a fourth order polynomial interpolation to obtain the RNDs. Then, a calibration function is used to convert the RNDs into RWDs. There are two types of calibration function which are parametric and non-parametric calibrations. The density is extracted from the Dow Jones Industrial Average (DJIA) index options with a one month constant maturity from January 2009 until December 2015. The performance of RNDs and RWDs extracted are evaluated by using a density forecasting test. This study found out that the RWDs obtain can provide an accurate information regarding the price of the underlying asset in future compared to that of the RNDs. In addition, empirical evidence suggests that RWDs from a non-parametric calibration has a better accuracy than other densities.

1.
X.
Liu
,
M.B.
Shackleton
,
S.J.
Taylor
, and
X.
Xu
,
J. Bank. Financ.
31
,
1501
(
2007
).
2.
J.R.H.
Ornelas
and
M.Y.
Takami
,
Brazilian Financ. Rev.
9
,
9
(
2011
).
3.
R.R.
Bliss
and
N.
Panigirtzoglou
,
J. Bank. Financ.
26
,
381
(
2002
).
4.
A.
Santos
and
J.
Guerra
,
J. Futur. Mark.
0
,
1
(
2014
).
5.
J.M.
Campa
,
P.H.K.
Chang
, and
R.L.
Reider
,
J. Int. Money Financ.
17
,
117
(
1998
).
6.
E.
Jondeau
and
M.
Rockinger
,
19
,
885
(
2000
).
7.
F.J.
Fabozzi
,
R.
Tunaruz
, and
G.
Albotax
,
Quant. Financ.
9
,
55
(
2009
).
8.
G.B.
Perales
and
F.I.M.
Cuevas
,
Ensayos Rev. Econ.
27
,
33
(
2008
).
9.
B.
Bahra
,
Implied Risk-Neutral Probability Density Functions From Option Prices: Theory and Application
(
1997
).
10.
11.
R.
Bu
and
K.
Hadri
,
Econom. J.
10
,
216
(
2007
).
12.
S.
Figlewski
, in
Volatility Time Ser. Econom. Essays Honor Robert Engle
(
2010
), pp.
323
356
.
13.
R.R.
Bliss
and
N.
Panigirtzoglou
,
J. Finance
59
,
407
(
2004
).
14.
Y.
Aït-sahalia
and
A.W.
Lo
,
J. Finance
53
,
499
(
1998
).
15.
Y.
Aït-Sahalia
and
A.W.
Lo
,
J. Econom.
94
,
9
(
2000
).
16.
J. V.
Rosenberg
and
R.F.
Engle
,
J. Financ. Econ.
64
,
341
(
2002
).
17.
J.C.
Jackwerth
,
Rev. Financ. Stud.
13
,
433
(
2000
).
18.
F.X.
Diebold
,
J.
Hahn
, and
A.S.
Tay
,
Rev. Econ. Stat.
81
,
661
(
1999
).
19.
R.
De Vincent-Humpreys
and
J.
Noss
,
Estimating Probability Distributions of Future Asset Prices : Empirical Transformations from Option-Implied Risk-Neutral to Real-World Density Functions
(
2012
).
20.
M.B.
Shackleton
,
S.J.
Taylor
, and
P.
Yu
,
J. Bank. Financ.
34
,
2678
(
2010
).
21.
V.
Ivanova
and
J.M. Puigvert
Gutiérrez
,
J. Bank. Financ.
48
,
210
(
2014
).
22.
H.
Esben
and
L.
Tsiaras
,
J. Futur. Mark.
31
,
727
(
2011
).
23.
D.T.
Breeden
and
R.H.
Litzenberger
,
J. Bus.
51
,
621
(
1978
).
24.
G.J.
Jiang
and
Y.S.
Tian
,
Rev. Financ. Stud.
18
,
1305
(
2005
).
25.
A.
Kostakis
,
N.
Panigirtzoglou
, and
G.
Skiadopoulos
,
Manage. Sci.
57
,
1231
(
2011
).
26.
P.L.
Fackler
and
R.P.
King
,
Am. Agric. Econ. Assoc.
72
,
73
(
1990
).
27.
B.
Silverman
,
Density Estimation for Statistics and Data Analysis
(
CRC press
,
1986
).
28.
F.X.
Diebold
,
T.
Gunther
, and
A.
Tay
,
Int. Econ. Rev. (Philadelphia)
.
39
,
863
(
1998
).
29.
J.
Berkowitz
,
J. Bus. Econ. Stat.
19
,
465
(
2001
).
30.
J.
Birru
and
S.
Figlewski
,
J. Financ. Mark.
15
,
151
(
2011
).
31.
P.
Christo
and
X.N.
Pan
,
Equity Portfolio Management Using Option Price Information
(
2014
).
32.
M.
Grith
,
W.K.
Hardle
, and
M.
Schienle
, in
Handb. Comput. Financ.
(
Springer Berlin Heidelberg
,
2012
), pp.
277
305
.
33.
A.
Kempf
,
O.
Korn
, and
S.
Sassning
,
Rev. Financ.
19
,
467
(
2015
).
34.
J.M.
Puigvert-Gutiérrez
and
R.
De Vincent-Humpreys
,
Eurasian Econ. Rev.
2
,
1
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.