In this paper, we will introduce an approximate solution of nonhomogeneous Riccati matrix differential equations with time delay using one of He’s iterative methods, namely, variational iteration method. The solution of the considered model of the Riccati differential equation are evaluated in the form of a convergent series with iterated components and also derive the sequence of variational iteration formula and prove it convergent. In addition, illustrative examples are considered and solved in connection with the method of steps for solving delay differential equation.

1.
Biazar
J.
,
Porshokouhi
M. G.
and
Ghanbari
B.
, “
Numerical solution of functional integral equations by the variational iteration method
”,
Journal of computational and applied mathematics
,
235
,
2581
2585
(
2011
).
2.
Brauer
F.
and
Nohel
J. A.
, “
Ordinary Differential Equations
”,
W. A. Benjamin, Inc.
,
1973
.
3.
Breda
D.
,
Maset
S.
and
Vermiglio
R.
Stability of Linear Delay Differential Equations A Numerical Approach with Matlab
”,
Springer
(
2015
).
4.
Davod
K. S.
and
Hadi
R. G.
, “
Convergence of the variational iteration method for the telegraph equation with integral conditions
”,
Wiley Inter Science
Vol.
27
, pp.
1442
1455
(
2010
).
5.
El’sgol’ts
L. E.
and
Norkin
S. B.
, “
Introduction to the Theory and Application of Differential Equations with Deviating Arguments
”,
Academic Press
,
New York
,
1973
.
6.
Elsgolc
L. E.
, “
Qualitative Methods in Mathematical Analysis
”,
Trans. Math. Mono., American Mathematical Society
, Vol.
12
,
1964
.
7.
F.
Mohammedi
,
M.M.
Hossaeini
, “
A comparative study of Numerical Methods for Solving Quadratic Riccati Differential Equation
”,
J. Franklin Inst
,
348
, pp.
156
164
(
2011
).
8.
Geng
F.
,
Lin
Y.
and
Cui
M.
, “
A piecewise variational iteration method for Riccati differential equations
”,
Computers and Mathematics with Applications
,
58
,
2518
2522
,
2009
.
9.
Ghomanjani
F.
and
Ghaderi
S.
, “
Variational Iterative Method Applied to Variational Problems with Moving Boundaries
”,
Applied Mathematics
,
3
,
395
402
(
2012
).
10.
Ghorbani
A.
and
Saberi-Nadjafi
J.
, “
Convergence of He’s variational iteration method for nonlinear oscillators
”,
Nonlinear Sci. Lett. A.
, Vol.
1
, No.
4
,
379
384
(
2010
).
11.
Glizer
V. Y.
and
Dmitriev
M. G.
, “
A symptotic properties of solution of singularly perturbed Cauchy problem encountered in optimal – control theory
”,
Differ. Equ.
, vol.
14
, no.
4
, pp.
423
432
(
1978
).
12.
Glizer
V. Y.
and
Dmitriev
M. G.
, “
Solving perturbations in a linear optimal control problem with quadratic functional
”,
Soviet Mathematics Doklady
, vol.
16
, pp.
1555
1558
(
1975
).
13.
H.
Aminkhah
,
M.
Hemmatnezhad
, “
An efficient Method for Quadratic Riccati Differential Equation Commun
.
Nonlinear Sci.Numer.Simul.
,
15
, pp.
835
839
(
2010
).
14.
He
J-H
, “
Variational Iteration Method; Some Recent Results and New Interpretations
”,
Journal of Computational and Applied Mathematics
,
207
, pp.
3
17
(
2007
).
15.
He
J-H.
, “
Variational Iteration Method; A Kind of Non-Linear Analytical Technique; Some Examples
”,
International Journal of Non-Linear Mechanics
,
34
, pp.
699
708
(
1999
).
16.
Hemeda
A. A.
, “
Variational iteration method for solving wave equation
”,
Computers and Mathematics with Applications
,
56
,
1948
1953
(
2008
).
17.
J.
Cang
,
Y.
Tan
,
H.
Xu
,
S. J.
Liao
,
Series solution of non-linear Riccati Differential equations with fractional order
,
Chaos, Solutions and Fractals
,
40
, pp.
1
9
(
2009
).
18.
Kurulay
M.
and
Secer
A.
, “
Variational Iteration Method for Solving Nonlinear Fractional Integro-Differential Equations
”,
International Journal of Computer Science and Emerging Technologies
, Vol.
2
, pp.
18
20
(
2011
).
19.
Ladde
G. S.
,
Zhang
B. G.
and
Lakshmikantham
V.
, “
Oscillation Theory of Differential Equations with Deviating Arguments
”,
Marcel Dekker, Inc.
,
New York, and Basel
,
1987
.
20.
Lancaster
P.
and
Rodman
L.
, “Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review”, In:
THE RICCATI EQUATION
, Edited by
Sergio
B.
,
Alan
L.
and
lan
C. W.
,
Springer-Verlag
. (
1991
).
21.
M.
Glsu
,
M.
Sezer
, “
On the solution of the Riccati equation by the Taylor matrix method
”,
Appl.math.Comput.
176
, pp.
414
421
(
2006
).
22.
Mittal
R. C.
, and
Nigam
R.
, “
Solution of Fractional Integro-Differential Equations by A Domain Decomposition Method
”,
International Journal of Appl. Math. And Mech.
,
4
(
2
), pp.
87
94
(
2008
).
23.
Mohammedali
K.H.
,
Ahmed
N.A.
and
Fadhel
F.S
Existence and Uniqeness of the Solution of Delay Differential Equations
” Accepted to be publish in ICoMEIA 2016,
AIP Publishing
[2]
24.
N.A.
Khan
,
A.
Ara
,
N. A.
Khan
,
Fractional order Riccati Differential equation: analytical approximation and numerical results
,
Advances in Difference Equations
, Accepted article.
25.
Nguyen
T.
and
Gajic
Z.
, “
Solving the matrix differential Riccati equation : A Lyapunov equation approach
”,
IEEE Trans. Autom. Control
, Vol.
55
, no.
1
, pp.
102
119
(
1960
).
26.
Nguyen
T.
and
Gajic
Z.
, “
Solving the matrix differential Riccati equation : A Lyapunov equation approach
”,
IEEE Trans. Autom. Control
, Vol.
55
, No.
1
, pp.
191
194
(
2010
).
27.
Reid
W. T.
, “
Riccati differential equations
”,
Academic Press, Inc
. (
1972
).
28.
Rodman
L.
, “
Algebraic Riccati Equations
”,
Clarendon Press
,
Oxford
(
1995
).
29.
S.
Abbasbandy
,
Homotopy Perturbation method for quadratic Riccati differential equation and comparison with A domian’s decomposition method
,
Applied Mathematics and Computation
,
172
, pp.
485
490
. (
2006
).
30.
S.
Abbasbandy
,
Iterated He’s homotopy Perturbation method for quadratic Riccati differential equation
,
Appl.Math.Comput.
,
175
, pp.
581
589
. (
2006
).
31.
Y.
Li
,
L.
Hu
,
Solving fractional Riccati Differential equation
.
Third International conference on Information and Computing using Haar wavelet
,
IEEE
, DOI . (
2010
).
32.
Y.
Tan
,
S.
Abbasbandy
,
Homotopy analysis method for quadratic Riccati differential equation
,
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
539
546
. (
2008
).
33.
Z.
Odibat
,
S.
Momani
,
Modiefied homotopy perturbation method : application to quadratic Riccati differential equation of fractional order
,
Chaos, Solutions and Fractals
,
36
, pp.
167
174
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.