In this paper, we will introduce an approximate solution of nonhomogeneous Riccati matrix differential equations with time delay using one of He’s iterative methods, namely, variational iteration method. The solution of the considered model of the Riccati differential equation are evaluated in the form of a convergent series with iterated components and also derive the sequence of variational iteration formula and prove it convergent. In addition, illustrative examples are considered and solved in connection with the method of steps for solving delay differential equation.
REFERENCES
1.
Biazar
J.
, Porshokouhi
M. G.
and Ghanbari
B.
, “Numerical solution of functional integral equations by the variational iteration method
”, Journal of computational and applied mathematics
, 235
, 2581
–2585
(2011
).2.
Brauer
F.
and Nohel
J. A.
, “Ordinary Differential Equations
”, W. A. Benjamin, Inc.
, 1973
.3.
Breda
D.
, Maset
S.
and Vermiglio
R.
“Stability of Linear Delay Differential Equations A Numerical Approach with Matlab
”, Springer
(2015
).4.
Davod
K. S.
and Hadi
R. G.
, “Convergence of the variational iteration method for the telegraph equation with integral conditions
”, Wiley Inter Science
Vol.27
, pp. 1442
–1455
(2010
).5.
El’sgol’ts
L. E.
and Norkin
S. B.
, “Introduction to the Theory and Application of Differential Equations with Deviating Arguments
”, Academic Press
, New York
, 1973
.6.
Elsgolc
L. E.
, “Qualitative Methods in Mathematical Analysis
”, Trans. Math. Mono., American Mathematical Society
, Vol.12
, 1964
.7.
F.
Mohammedi
, M.M.
Hossaeini
, “A comparative study of Numerical Methods for Solving Quadratic Riccati Differential Equation
”, J. Franklin Inst
, 348
, pp. 156
–164
(2011
).8.
Geng
F.
, Lin
Y.
and Cui
M.
, “A piecewise variational iteration method for Riccati differential equations
”, Computers and Mathematics with Applications
, 58
, 2518
–2522
, 2009
.9.
Ghomanjani
F.
and Ghaderi
S.
, “Variational Iterative Method Applied to Variational Problems with Moving Boundaries
”, Applied Mathematics
, 3
, 395
–402
(2012
).10.
Ghorbani
A.
and Saberi-Nadjafi
J.
, “Convergence of He’s variational iteration method for nonlinear oscillators
”, Nonlinear Sci. Lett. A.
, Vol.1
, No. 4
, 379
–384
(2010
).11.
Glizer
V. Y.
and Dmitriev
M. G.
, “A symptotic properties of solution of singularly perturbed Cauchy problem encountered in optimal – control theory
”, Differ. Equ.
, vol. 14
, no. 4
, pp. 423
–432
(1978
).12.
Glizer
V. Y.
and Dmitriev
M. G.
, “Solving perturbations in a linear optimal control problem with quadratic functional
”, Soviet Mathematics Doklady
, vol. 16
, pp. 1555
–1558
(1975
).13.
H.
Aminkhah
, M.
Hemmatnezhad
, “An efficient Method for Quadratic Riccati Differential Equation Commun
. Nonlinear Sci.Numer.Simul.
, 15
, pp. 835
–839
(2010
).14.
He
J-H
, “Variational Iteration Method; Some Recent Results and New Interpretations
”, Journal of Computational and Applied Mathematics
, 207
, pp. 3
–17
(2007
).15.
He
J-H.
, “Variational Iteration Method; A Kind of Non-Linear Analytical Technique; Some Examples
”, International Journal of Non-Linear Mechanics
, 34
, pp. 699
–708
(1999
).16.
Hemeda
A. A.
, “Variational iteration method for solving wave equation
”, Computers and Mathematics with Applications
, 56
, 1948
–1953
(2008
).17.
J.
Cang
,Y.
Tan
, H.
Xu
, S. J.
Liao
, Series solution of non-linear Riccati Differential equations with fractional order
, Chaos, Solutions and Fractals
, 40
, pp. 1
–9
(2009
).18.
Kurulay
M.
and Secer
A.
, “Variational Iteration Method for Solving Nonlinear Fractional Integro-Differential Equations
”, International Journal of Computer Science and Emerging Technologies
, Vol.2
, pp. 18
–20
(2011
).19.
Ladde
G. S.
, Zhang
B. G.
and Lakshmikantham
V.
, “Oscillation Theory of Differential Equations with Deviating Arguments
”, Marcel Dekker, Inc.
, New York, and Basel
, 1987
.20.
Lancaster
P.
and Rodman
L.
, “Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review”, In: THE RICCATI EQUATION
, Edited by Sergio
B.
, Alan
L.
and lan
C. W.
, Springer-Verlag
. (1991
).21.
M.
Glsu
,M.
Sezer
, “On the solution of the Riccati equation by the Taylor matrix method
”, Appl.math.Comput.
176
, pp. 414
–421
(2006
).22.
Mittal
R. C.
, and Nigam
R.
, “Solution of Fractional Integro-Differential Equations by A Domain Decomposition Method
”, International Journal of Appl. Math. And Mech.
, 4
(2
), pp. 87
–94
(2008
).23.
Mohammedali
K.H.
, Ahmed
N.A.
and Fadhel
F.S
“Existence and Uniqeness of the Solution of Delay Differential Equations
” Accepted to be publish in ICoMEIA 2016, AIP Publishing
[2]24.
N.A.
Khan
, A.
Ara
, N. A.
Khan
, Fractional order Riccati Differential equation: analytical approximation and numerical results
, Advances in Difference Equations
, Accepted article.25.
Nguyen
T.
and Gajic
Z.
, “Solving the matrix differential Riccati equation : A Lyapunov equation approach
”, IEEE Trans. Autom. Control
, Vol. 55
, no. 1
, pp. 102
–119
(1960
).26.
Nguyen
T.
and Gajic
Z.
, “ Solving the matrix differential Riccati equation : A Lyapunov equation approach
”, IEEE Trans. Autom. Control
, Vol. 55
, No. 1
, pp. 191
–194
(2010
).27.
28.
29.
S.
Abbasbandy
, Homotopy Perturbation method for quadratic Riccati differential equation and comparison with A domian’s decomposition method
, Applied Mathematics and Computation
, 172
, pp. 485
–490
. (2006
).30.
S.
Abbasbandy
, Iterated He’s homotopy Perturbation method for quadratic Riccati differential equation
, Appl.Math.Comput.
, 175
, pp. 581
–589
. (2006
).31.
Y.
Li
, L.
Hu
, Solving fractional Riccati Differential equation
. Third International conference on Information and Computing using Haar wavelet
, IEEE
, DOI . (2010
).32.
Y.
Tan
,S.
Abbasbandy
, Homotopy analysis method for quadratic Riccati differential equation
, Commun. Nonlinear Sci. Numer. Simul.
, 13
, pp. 539
–546
. (2008
).33.
Z.
Odibat
, S.
Momani
, Modiefied homotopy perturbation method : application to quadratic Riccati differential equation of fractional order
, Chaos, Solutions and Fractals
, 36
, pp. 167
–174
(2008
).
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.