In this paper, the effects of Brownian motion, thermophoresis, chemical reaction, heat generation, magnetohydrodynamic and thermal radiation has been included in the model of nanofluid flow and heat transfer over a moving surface with variable thickness. The similarity transformation is used to transform the governing boundary layer equations into ordinary differential equations (ODE). Both optimal homotopy asymptotic method (OHAM) and Runge-Kutta fourth order method with shooting technique are employed to solve the resulting ODEs. For different values of the pertinent parameters on the velocity, temperature and concentration profiles have been studied and details are given in tables and graphs respectively. A comparison with the previous study is made, where an excellent agreement is achieved. The results demonstrate that the radiation parameter N increases, with the increase in both the temperature and the thermal boundary layer thickness respectively. While the nanoparticles concentration profiles increase with the influence of generative chemical reaction γ < 0, while it decreases with destructive chemical reaction γ > 0.

1.
E.M.A.
Elbashbeshy
and
D.A.
Aldawody
,
Comput. Math. Appl.
60
,
2806
2811
(
2010
).
2.
E.M.A.
Elbashbeshy
and
M.A.A.
Bazid
,
Appl. Math. Comput.
153
,
721
731
(
2004
).
3.
M.E.
Ali
,
Int. J. Heat Mass Flow
16
,
280
290
(
1995
).
4.
R.
Nazar
,
N.
Amin
,
I.
Pop
and
D.
Flip
,
Int. J. Eng. Sci.
42
,
1241
1253
(
2004
).
5.
A.
Ishak
,
R.
Nazar
and
I.
Pop
,
Nonlinear Anal. Real World Appl.
10
,
2909
2913
(
2009
).
6.
S.U.S.
Choi
,
ASME Fluid Eng. Div.
231
,
99
105
(
1995
).
7.
T.
Fang
,
J.
Zhang
and
Y.
Zhong
,
Appl. Math. Comput.
218
,
7241
7252
(
2012
).
8.
M.
Hamad
,
Int. Commun. Heat Mass Transfer
38
,
487
492
(
2011
).
9.
M.S.
Abdel-wahed
,
E.M.A.
Elbashbeshy
and
T.G.
Emam
,
Appl. Math. Comput.
254
,
49
62
(
2015
).
10.
M.
Mustafa
,
A.
Mushtaq
,
T.
Hayat
and
A.
Alsaedi
,
J Taiwan Inst Chem Eng.
47
,
43
49
(
2015
).
11.
M.
Ashraf
and
M.
Rashid
,
World Appl. Sci. J.
16
,
1338
1351
(
10
) (
2012
).
12.
R.N.
Carter
,
L.L.
Smith
,
H.
Karim
,
M.
Castaldi
,
S.
Etemad
,
G.
Muench
,
R. S.
Boorse
,
P.
Menacherry
and
W.C.
Pfefferle
,
MRS Proceedings
,
549
, doi:,
93
(
1998
).
13.
I.L.
Animasaun
,
J. Nigerian Math. Soc.
34
,
11
31
(
2015
).
14.
D.
Srinivasacharya
and
G. S.
Reddy
,
J. Egyptian Math. Soc.
24
,
108
115
(
2016
).
15.
K.V.
Prasad
,
K.
Vajravelu
and
P.S.
Datti
,
Int. J. Therm. Sci.
49
,
603
610
(
2010
).
16.
S.
Rosseland
,
Berlin
:
Springer
;
41
44
(
1931
).
17.
N.S.
Akbar
,
S.
Nadeem
,
R. UI
Haq
and
Z.H.
Khan
,
Chin J Aeronaut
26
,
1389
1397
(
6
) (
2013
).
18.
M.
Kothandapani
and
J.
Prakash
,
Int. J. Heat Mass Transfer
81
,
234
245
(
2015
).
19.
V.
Marinca
and
N.
Herisanu
,
Int. Commun. Heat Mass Transfer
35
,
710
715
(
2008
).
20.
A.
Madaki
,
M.
Abdulhameed
,
M.
Ali
and
R.
Roslan
,
SpringerPlus
5
,
513
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.