Spinach’s chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves’ electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill’s reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettuce<oil palm frond=pandan<spinach which can be used as a simple quality marker for the leaves’ chloroplasts. Chloroplasts of oil palm frond and water lettuce showed low photoreduction rate of 14 to 22%. On the other hand, the chloroplasts of both spinach and pandan leaves exerted an initial photoreduction rate which was above 90%. The photoreduction rate of these chloroplasts remained to above 60% even after 30 day-storage at −20°C. In comparison with spinach, pandan leaves’ chloroplasts possessed similar in vitro functional activity and storage stability at 4°C and −20°C. This warrants further investigation on chloroplasts of pandan leaves for higher-value applications.

1.
J.
Cuello
and
M. J.
Quiles
, “Fractionation of Thylakoid Membranes into Grana and Stroma Thylakoids”, in
Photosynthesis Research Protocol
, edited by
R.
Carpentier
(
Humana Press
,
Totowa
,
2004
), pp.
1
9
2.
J. O.
Calkins
,
Y.
Umasankar
,
H.
O’Neil
and
R. P.
Ramasamy
,
Energy Environ. Sci.
,
6
,
1891
1900
(
2013
).
3.
A.
Ventrella
,
L.
Catucci
,
T.
Placido
,
F.
Longobardi
and
A.
Agostiano
,
Biosens. Bioelectron.
,
26
,
4747
4752
(
2011
).
4.
M.
Plesničar
and
Ž
,
Stanković
,
Photosynthetica
,
13
,
359
364
(
1979
).
5.
X. Y.
Zhu
,
G. C.
Chen
and
C. L.
Zhang
,
Photosynthetica
,
39
,
183
189
(
2001
).
6.
R.
Hill
and
R.
Scarisbrick
,
Proc. R. Soc. London Ser. B
,
129
,
238
255
(
1940
).
7.
D.L.
Farkas
and
S.
Malkin
,
Plant Physiol.
,
64
,
942
947
(
1979
).
8.
W.G.
Nolan
,
Plant Physiol.
,
66
,
234
237
(
1980
).
9.
F.
Macdowall
and
R.
Lumry
,
Plant Physiol.
,
50
,
305
307
(
1972
).
10.
J.
Gomes-Laranjo
,
P.
Salgado
,
H.W.W.F.
Sang
,
R.
Kraayenhof
and
J.
Torres-Pereira
,
Photosynthetica
,
43
,
237
246
(
2005
).
11.
M.
Ashraf
and
P. J. C.
Harris
,
Photosynthetica
,
51
,
163
190
(
2013
).
12.
P. S.
Campos
,
V.
Quartin
,
J. C.
Ramalho
and
M. A.
Nunes
,
J. Plant Physiol.
,
160
,
283
292
(
2003
).
13.
A.
Mattsson
,
New Forests
,
13
,
223
248
(
1996
).
14.
M.
Bajji
,
J. M.
Kinet
and
S.
Lutts
,
Plant Growth Regul.
,
36
,
61
70
(
2002
).
15.
A.
Trebst
,
Photosynt. Res.
,
92
,
217
224
(
2007
).
16.
P.
Han
,
P.
Kumar
, and
B. –L.
Ong
,
J. Environ. Sci.
,
26
,
404
414
(
2014
).
17.
Y.
Li
,
B.
Ren
,
L.
Ding
,
Q.
Shen
,
S.
Peng
and
S.
Guo
,
Plos One
,
8
,
e62032
(
2013
).
18.
G. V.
Ginkel
,
Acta Bot. Neerl.
,
26
,
303
311
(
1977
).
19.
S. D.
Roe
, “Purification Strategy” in
Protein Purification Techniques A Practical Approach
(2nd ed), edited by
S. D.
Roe
(
Oxford University Press Inc.
,
New York
,
2006
), pp.
1
10
.
20.
D.
Clausse
,
J. –L.
Lanoisellé
and
S.
Toumi
, “Ice Nucleation in Bulk and Dispersed Water: Application to Freezing of Foods”, in
Water Properties of Foods, Pharmaceutical, and Biological Material
, edited by
M. D. P.
Buera
, et al
. (
Taylor & Francis Group
,
Boca Raton
,
2006
), pp.
133
150
.
This content is only available via PDF.
You do not currently have access to this content.