Proton exchange membranes for a direct methanol fuel cell (DMFC) were prepared by incorporating silica/silicotungstic acid (SiO2/SiWA) inorganic composite into a Nafion polymer. The effects of SiO2/SiWA content on proton conductivity of membranes were investigated by using a four-probe conductivity cell. Methanol permeability of composite membrane was also determined by using a homemade diffusion cell and gas chromatography technique. It was found that proton conductivity of the composite membranes decreased with SiO2/SiWA content, however the highest proton conductivity achieved was 11% greater than the pure recast Nafion membrane. The methanol permeability of composite membrane was much lower than that of pure recast Nafion, in a reduction of 58% which indicated a better resistance to fuel crossover. Nafion-SiO2/SiWA composite membrane showed promising advantages over pure Nafion on electrochemical properties such as proton conductivity and fuel crossover and it is potentially attractive for use in DMFC.

1.
A.
Kolli
,
A.
Gaillard
,
A.
De Bernardinis
,
O.
Bethoux
,
D.
Hissel
and
Z.
Khatir
,
Energy Convers. Manage.
105
,
716
730
(
2015
).
2.
3.
X.
Li
and
A.
Faghri
,
J. Power Sources
226
,
223
240
(
2013
).
4.
S. K.
Kamarudin
,
F.
Achmad
and
W. R. W.
Daud
,
Int. J. Hydrogen Energy
34
,
6902
6916
(
2009
).
5.
L.
Liu
,
W.
Chen
and
Y.
Li
,
J. Membr. Sci.
504
,
1
9
(
2016
).
6.
H. S.
Thiam
,
W. R. W.
Daud
,
S. K.
Kamarudin
,
A. B.
Mohammad
,
A. A. H.
Kadhum
,
K. S.
Loh
and
E. H.
Majlan
,
Int. J. Hydrogen Energy
36
,
3187
3205
(
2011
).
7.
Z. X.
Liang
,
T. S.
Zhao
and
J.
Prabhuram
,
J. Membr. Sci.
283
,
219
224
(
2006
).
8.
C. W.
Lin
and
Y. S.
Lu
,
J. Power Sources
237
,
187
194
(
2013
).
9.
J.-D.
Jeon
,
J.
Kim
and
S.-Y.
Kwak
,
J. Membr. Sci.
415–416
,
353
359
(
2012
).
10.
H. S.
Thiam
,
W. R. W.
Daud
,
S. K.
Kamarudin
,
A. B.
Mohamad
,
A. A. H.
Kadhum
,
K. S.
Loh
and
E. H.
Majlan
,
Energy Convers. Manage.
75
,
718
726
(
2013
).
11.
J.
Joseph
,
C.-Y.
Tseng
and
B.-J.
Hwang
,
J. Power Sources
196
,
7363
7371
(
2011
).
12.
C.-C.
Ke
,
X.-J.
Li
,
Q.
Shen
,
S.-G.
Qu
,
Z.-G.
Shao
and
B.-L.
Yi
,
Int. J. Hydrogen Energy
36
,
3606
3613
(
2011
).
13.
J.-H.
Kim
,
S.-K.
Kim
,
K.
Nam
and
D.-W.
Kim
,
J. Membr. Sci.
415–416
,
696
701
(
2012
).
14.
B.
Baradie
,
J. P.
Dodelet
* and
D.
Guay
*,
J. Electroanal. Chem.
489
,
101
105
(
2000
).
15.
A.
Mahreni
,
A. B.
Mohamad
,
A. A. H.
Kadhum
,
W. R. W.
Daud
and
S. E.
Iyuke
,
J. Membr. Sci.
327
,
32
40
(
2009
).
16.
Y.
Devrim
,
Electrochim. Acta
146
,
741
751
(
2014
).
17.
S.
Zhong
,
X.
Cui
,
S.
Dou
,
Y.
Luo
,
W.
Cui
,
S.
Zhao
,
H.
Zhu
and
W.
Liu
,
Solid State Ionics
181
,
1499
1504
(
2010
).
18.
H.
Tian
and
O.
Savadogo
,
J. New Mat. Elctr. Sys.
9
,
61
71
(
2006
).
19.
J.-M.
Song
,
H.-S.
Woo
,
J.-Y.
Sohn
and
J.
Shin
,
J. Ind. Eng. Chem.
36
,
132
138
(
2016
).
20.
Y.
Devrim
,
S.
Erkan
,
N.
Baç
and
I.
Eroglu
,
Int. J. Energy Res.
37
,
435
442
(
2013
).
21.
H. S.
Thiam
,
W. R. W.
Daud
,
S. K.
Kamarudin
,
A. B.
Mohamad
,
A. A. H.
Kadhum
,
K. S.
Loh
and
E. H.
Majlan
,
Int. J. Hydrogen Energy
38
,
9474
9483
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.