An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

1.
S. K.
Wijaya
,
C.
Badri
,
J.
Misbach
,
T. P.
Soemardi
, and
V.
Sutarmo
,
Optimization Electroencephalography (EEG) for Detecting Acute IschemicStroke: A Preliminary Study
, in
Proceeding of the ICBETA 2014, International Conference on Biomedical Engineering, Technology and Applications
,
Yogyakarta, Indonesia
,
2014
, pp.
165
169
.
2.
W. O.
Tatum
,
A. M.
Husain
,
S. R.
Benbadis
, and
P. W.
Kaplan
,
Handbook of EEG interpretation
:
Demos Medical Publishing
,
2014
.
3.
M.
Del Pozo-Banos
,
J. B.
Alonso
,
J. R.
Ticay-Rivas
, and
C. M.
Travieso
,
Electroencephalogram subject identification: A review
,
Expert Systems with Applications
, vol.
41
, pp.
6537
6554
, 11/1/
2014
.
4.
N. K.
Al-Qazzaz
,
S. H. M.
Ali
,
S.
Islam
,
S. A.
Ahmad
, and
J.
Escudero
,
EEG Wavelet Spectral Analysis During a Working Memory Tasks in Stroke-Related Mild Cognitive Impairment Patients
,
International Conference for Innovation in Biomedical Engineering and Life Sciences
, vol.
56
, pp.
82
85
.
5.
Y.
Dai
,
X.
Wang
,
X.
Li
, and
Y.
Tan
,
Sparse EEG compressive sensing for web-enabled person identification
,
Measurement
, vol.
74
, pp.
11
20
,
2015
.
6.
F.
Touati
and
R.
Tabish
,
U-Healthcare System: State-of-the-Art Review and Challenges
,
J Med Syst
,
2013
.
7.
J. C.
Lee
and
D. S.
Tan
,
Using a low-cost electroencephalograph for task classification in HCI research
,
Proceedings of the 19th ACM Symposium on User Interface Software and Technology
, pp.
81
90
,
2006
.
8.
J.
Kang
,
S.
Yoo
, and
D.
Ho
,
Development of a Portable Embedded Patient Monitoring System
,
International Journal of Multimedia and Ubiquitous Engineering
, vol.
8
, pp.
141
150
,
2013
.
9.
J. A.
Lovelace
,
T. S.
Witt
, and
F. R.
Beyette
,
Modular, Bluetooth Enabled, Wireless Electroencephalograph (EEG) Platform
,
35th Annual International Conference of the IEEE EMBS
,
Osaka, Japan
,
2013
.
10.
J. L.
Park
,
M. M.
Fairweather
, and
D. I.
Donaldson
,
Making the case for mobile cognition: EEG and sports performance
,
Neurosci Biobehav Rev
, vol.
52
, pp.
117
30
, May
2015
.
11.
Z.
Zhang
and
T.
Huang
,
Research and implementation on the embedded RTOS for the Ethernet data acquisition and transmission system
,
Third International Conference on Genetic and Evolutionary Computing
,
IEEE, Computer Society
, pp.
422
425
,
2009
.
12.
S. M.
Wurth
and
L. J.
Hargrove
,
A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure
,
Journal of NeuroEngineering and Rehabilitation
, vol.
11
, pp.
1
13
,
2014
.
13.
M.
Teplan
,
Fundamental of EEG Measurement
,
Measurement Science Review
, vol.
2
, pp.
1
11
,
2002
.
14.
R.
Petrolis
,
V.
Gintautas
, and
A.
Krisciukaitis
,
Multistage principal component analysis based method for abdominal ECG decomposition
,
Physiol Meas
, vol.
36
, pp.
329
40
, Feb
2015
.
15.
L.
Losonczi
,
L. F.
Márton
,
T. S.
Brassai
, and
L.
Farkas
, Embedded EEG Signal Acquisition Systems,
Procedia Technology
, vol.
12
, pp.
141
147
,
2014
.
16.
Y.
Zou
,
V.
Nathan
, and
R.
Jafari
,
Automatic Identification of Artifact-related Independent Components for Artifact Removal in EEG Recordings
,
IEEE Journal of Biomedical and Health Informatics
,
2013
.
17.
E.
Mastinu
,
M.
Ortiz-Catalan
, and
B.
Håkansson
,
Analog Front-Ends comparison on the way to a portable, low-power and low-cost EMG controller based on Pattern Recognition
,
Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
.
Milan
,
Aug 25-29
,
2015
.
18.
Texas Instrument
,
Low-Noise, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements
, http://www.ti.com/lit/ds/symlink/ads1299.pdf.
19.
Texas Instrument
,
EEG Front-End Performance Demonstration Kit
, http://www.ti.com/lit/ug/slau443b/slau443b.pdf.
This content is only available via PDF.
You do not currently have access to this content.