The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snn′ – 1s2nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).

1.
J.-C.
Pain
,
F.
Gilleron
and
T.
Blenski
,
Laser. Part. Beams
33
,
201
210
(
2015
).
2.
J.-C.
Pain
and
F.
Gilleron
,
High Energy Density Phys.
15
,
30
42
(
2015
).
3.
B. F.
Rozsnyai
,
J. Quant. Spectrosc. Radiat. Transfer
17
,
77
88
(
1977
).
4.
D.
Gilles
and
O.
Peyrusse
,
J. Quant. Spectrosc. Radiat. Transfer
53
,
647
661
(
1995
).
5.
J.
Humlíček
,
J. Quant. Spectrosc. Radiat. Transfer
21
,
309
313
(
1979
).
6.
A. Y.
Potekhin
,
G.
Chabrier
and
D.
Gilles
,
Phys. Rev. E
65
,
036412
(
2002
).
7.
S.
Laulan
,
C.
Blancard
and
G.
Faussurier
,
High Energy Density Phys.
4
,
131
141
(
2008
).
8.
C. A.
Iglesias
,
J. L.
Lebowitz
and
D.
MacGowan
,
Phys. Rev. A
28
,
1667
1672
(
1983
).
9.
S.
Hamaguchi
,
R. T.
Farouki
and
D. H. E.
Dubin
,
Phys. Rev. E
56
,
4671
4682
(
1997
).
10.
H. A.
Bethe
and
E. E.
Salpeter
,
Quantum Mechanics of one- and two-electron atoms
(
Berlin
:
Springer
,
1957
).
11.
M. S.
Dimitrijević
and
N. N.
Konjević
,
J. Quant. Spectrosc. Radiat. Transfer
24
,
451
459
(
1980
).
12.
V.
Dervieux
 et al,
High Energy Density Phys.
16
,
12
17
(
2015
).
13.
J.
Bruneau
,
J. Phys. B: At. Mol. Phys.
16
,
4135
4151
(
1983
).
14.
E. A.
Uehling
,
Phys. Rev.
48
,
55
63
(
1935
).
15.
G. C.
Rodrigues
 et al,
At. Data Nucl. Data Tables
86
,
117
233
(
2004
).
16.
L. J.
Curtis
,
J. Phys.
B18
,
L651
6
(
1985
).
17.
W. E.
Lamb
and
R. C.
Retherford
,
Phys. Rev.
72
,
241
243
(
1947
).
18.
H.
Bethe
,
Phys. Rev.
72
,
339
341
(
1947
).
19.
G. W.
Erickson
,
J. Phys. Chem. Data
6
,
831
869
(
1977
).
20.
21.
P. J.
Mohr
,
Phys. Rev. Lett.
34
,
1050
1052
(
1975
).
22.
P. J.
Mohr
,
Phys. Rev. A
26
,
2338
2354
(
1982
).
23.
E.-O.
Le Bigot
,
P.
Indelicato
and
P.
Mohr
,
Phys. Rev. A
64
,
052508
(
2001
).
24.
V. A.
Yerokhin
and
V. M.
Shabaev
,
Phys. Lett. A
207
,
274
280
(
1995
).
25.
V. A.
Yerokhin
 et al,
Phys. Lett. A
234
,
361
366
(
1997
).
26.
P.
Indelicato
and
P. J.
Mohr
,
Phys. Rev. A
63
,
052507
(
2001
).
27.
A.N.
Artemyev
 et al,
Phys. Rev. A
71
,
062104
(
2005
).
28.
P.
Indelicato
and
J.-P.
Desclaux
,
Phys. Rev. A
42
,
5139
5149
(
1990
).
29.
P.
Persson
,
I.
Lindgren
and
S.
Salomonson
,
Phys. Scr.
T46
,
125
131
(
1993
).
30.
J.
Sapirstein
and
K. T.
Cheng
,
Phys. Rev. A
73
,
012503
(
2006
).
31.
F.
Lanzini
and
H. O.
Di Rocco
,
High Energy Density Phys.
17
,
240
247
(
2015
).
32.
H. O.
Di Rocco
and
F.
Lanzini
,
Braz. J. Phys.
46
,
175
183
(
2016
).
33.
T. A.
Welton
.
Phys. Rev.
74
,
1157
1167
(
1948
).
34.
P.
Indelicato
,
O.
Gorveix
and
J.-P.
Desclaux
,
J. Phys. B: At. Mol. Phys.
20
,
651
663
(
1987
).
35.
J. A.
Lowe
,
C. T.
Chantler
and
I. P.
Grant
,
Rad. Phys. Chem.
85
,
118
123
(
2013
).
36.
A.
Kramida
,
Yu.
Ralchenko
,
J. Reader and NIST ASD Team
(
2015
). NIST Atomic Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2016, November 7]. National Institute of Standards and Technology, Gaithersburg, MD.
37.
A. H.
Gabriel
,
Mon. Not. R. astr. Soc.
160
,
99
119
(
1972
).
38.
Y.
Aglitskiy
, unpublished results (http://nlte.nist.gov/NLTE9).
This content is only available via PDF.
You do not currently have access to this content.