Long-term memory plays a crucial role in learning mechanisms. We start to build up a probability model of learning (ENKI) ten years ago based on findings of micro genetics published in [1]. We accomplished a number of experiments in our department to testify the validity of the model with success. We described ENKI in detail here, giving the general mathematical formula of the learning curve. This paper pointed out that the model ENKI can detect its own strategy of learning in the brain as well as the simulation of the process of learning that will lead to the development of this method using its own strategy.
BIBLIOGRAPHY
1.
R.
Fields
, Scientific American
292
, (2005
).2.
H.
Ebbinghaus
, Annals Of Neurosciences
20
, (2013
).3.
4.
A.
Teleki
, “Biológiai rendszerek tanulási eredményessége
,” in: Trends and Results in Biological Sciences and Education
, International Scientific Conference
, Komarno
18.04.2016
5.
6.
D.
Drachman
, Neurology
64
(12
), pp. 2004
–5
.7.
M.
Benko
, B.
Lacsný
, R.
Podoba
and A.
Teleki
, “Role of Certain Features Observed in Knowledge Increase Testing
,” In: Scientia Iuvenis : Book of Scientific Papers from 14th international scientific conference of PhD. students, young scientists and pedagogues
, (Nitra
, 2013
), pp. 457
–164
.8.
M.
Benko
, A.
Teleki
and B.
Lacsný
, “Určenie parametrov rastu znalostí opakovaným riešením fyzikálnych úloh”, (Obzory matematiky, fyziky a informatiky
, Nitra
, 2014
), pp. 45
–49
.9.
S.
Dudáková
and B.
Lacsný
, “Testovanie riešení úloh s okamžitou spätnou väzbou,” (Študentská vedecká konferencia
, Nitra
, 2016
), pp. 142
–145
.10.
Sciencedaily (2016).
11.
12.
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.