The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn’t bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

1.
P.
Martosuyono
and
P.
Rogers
,
Heat stability of enzyme PDC from thermophilic bacteria Producing Ethanol [Stabilitas Panas Enzim PDC dari Bakteri Termofil Penghasil Etanol]
,
Jurnal Pasca Panen
,
2004
,
2
, pp.
1
7
.
2.
Martosuyono
and
Misgiyarta
,
Isolation of thermophilic bacteria Ethanol Producers of Compost [Isolasi Bakteri Termofilik Penghasil Etanol dari Kompos]
,
Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian
,
2006
.
3.
ITP–FTP UB
,
Mechanisms of Microbial Resistance to High Temperature
[Mekanisme Ketahanan Mikroba terhadap Suhu Tinggi], unpublished.
4.
M.S.
,
Alam
,
P.R.
,
Sarjono
,
A.L.N.
,
Amin
,
Isolation of thermophilic cellulolytic bacteria Compost Farm in the village of Bayat, Klaten, Central Java
[Isolasi Bakteri Selulolitik Termofilik Kompos Pertanian Desa Bayat, Klaten, Jawa Tengah],
Chem Info
, Vol
1
, No.
1
,
2013
, pp.
190
195
.
5.
Balat
,
M.
,
Bioethanol prooduction from lignocellulosic materials through biochemical pathways: a review
[Produksi bioetanol dari bahan lignoselulosa melalui jalur biokimia : tinjauan],
2014
, pp.
1
19
.
6.
S.
Septian
.,
Single Phase Bioethanol Production Using Clostridium thermocellum of waste production Agar Graccillaria sp
[Produksi Bioetanol Satu Tahap Menggunakan Bakteri Clostridium thermocellum dari Limbah Produksi Agar-agar Graccillaria sp],
2010
.
7.
Kathleen
,
Foundation in Microbiology
,
New York
;
Prentice Hall
,
2008
.
8.
N.
Richana
.,
Xylanase enzyme production and Prospects for the Development of Bioindustry in Indonesia
[Produksi dan Prospek Enzim Xilanase dalam Pengembangan Bioindustri di Indonesia],
Buletin AgriBio
5
(
1
),
2002
, pp.
29
36
.
9.
B.
Tolner
,
B.
Poolman
., and
W. N.
Konings
,
Adaptation of microorganisms and their transport systems to high temperatures
,
Comparative Biochemcal.
Vol
118
(
3
),
1997
, pp.
423
428
.
10.
Brock
,
T. D.
,
Life at high temperatures
.
Science
, Vol.
230
,
1985
, pp.
132
137
.
11.
Lynd
,
L. R.
,
Production of ethanol from lignocellulosic materials using thermophilic bacteria : critical evaluation of potential and review
,
Adv. In Biochem. Eng./Biotechnol
, Springer-Verlag,
38
,
1989
, pp.
1
52
.
12.
M. K.
Bhat
,
Cellulose and releted enzymes ln Biotechnology
,
Biotecnology Advanteces
,
18
,
2000
, pp.
355
358
.
13.
T.M.
,
Wood
,
Properties of cellulolytic enzyme systems
.
Biochem Society Trans
,
13
,
1985
, pp.
407
410
.
14.
D.
Shallom
and
Y.
Shoham
,
Microbial hemicellulases
,
Curr Opin Microbial
6
,
2003
, pp.
219
228
.
15.
W.
Gerhartz
,
Enzyme in Industry : Production and Application
,
VCH, Verlagsgesellschaaft mbH
, D 6940, einheim,
1990
, pp.
81
82
.
16.
Anindyawati
,
T.
,
Enzymes and Waste Lignocellulose prospects for Bioethanol Production
[Prospek Enzim dan Limbah Lignoselulosa Untuk Produksi Bioetanol], BS, Vol.
44
, No.
1
, pp.
49
56
, Juni
2009
.
17.
P.A.
Wuyep
,
A.U.
Khan
and
A.J.
Nok
,
Production and Regulation of Lignin degrading enzymes from Lentinus squarrosulus (Mont) Singer and Psathyrella antrombonata Pegler
,
African Journal of Biotechnology
2
(
11
),
2003
, pp.
444
447
.
18.
P.
Bequin
,
J.P.
Auber
,
The Biological Degradation of Cellulose, FEMS
,
Microbiology Review
13
,
1994
, pp.
25
28
.
19.
K.
Viravaidya
,
W.
Tangjerdjaras
,
C.
Tachaapaikoon
,
Cellulosic Bioethanol from Clostridium thermocellum Fermentation
,
International Conference on Chemistry and Chemical Process, IPCBEE
(
IACSIT Press
,
Singapore
, 2011). Vol.
10
,
2011
, pp.
178
183
.
20.
C.O.
Sullivan
,
P.C.
Burell
,
W.P.
Clarke
,
L.L.
Blackall
,
A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization
,
Journal of Applied Microbiology
, Vol
103
, Issue
4
,
2007
, pp.
1332
1343
.
21.
Anonim
,
Fungi
(Trichoderma viride) as bioethanol manufacturing of natural materials (Natural Resources Exploration Study) [Jamur Kapang (Trichoderma viride) Sebagai Bahan Pembuatan Bioetanol Alami (Studi Eksplorasi Sumber Daya Alam)]
,
2010
.
22.
J.G.
Zeikus
,
C.
Vieille
,
A.
Savchenko
,
Thermozymes, Biotechnology and Structure Function Relationship
,
Extremophiles
,
21
,
1998
, pp.
179
183
.
23.
Y.
Hiromasa
,
A.
Yoichi
,
Yamamshita
,
Thermal Diassembly of Pyruvate Dehydrogenase Multienzyme Complex from Bacillus steaarothermophilus
Biosci, Biothecnology Biochemistry
, Vol.
58
(
10
),
1994
, pp.
1901
1905
.
24.
L.M.
Ilmi
,
K.
Dwianita
,
Aktifitas Enzim Lignin Peroksidase oleh Gliomastix sp. T3.7 pada Limbah Bonggol Jagung dengan Berbagai pH dan Suhu, Jurusan Biologi, Fakultas Matematik dan Ilmu Pengetahuan Alam
, unpublished.
25.
H.
Singh
,
Mycoredidiation
,
John Wiley & Sons, Inc.
America
,
2006
, pp.
358
375
.
26.
M.
Tien
and
T.K.
Kirk
,
Lignin degrading enzyme from Phanerochate chrysosporium : Purification characterization and catalytical properties of a unique H2O2 requiring oxygenease
,
Practice National Academy Sciences, USA
, Vol.
81
,
1984
, pp.
2280
2284
.
27.
M.
Hofrichter
,
Review : Lignin Convertion by manganese peroxidase
(
MnP, Enzyme Microbiol. Technol.
30
,
2002
, pp.
454
466
28.
Suparjo
,
Degradasi Komponen Lignoselulosa oleh Kapang Pelapuk Putih
,
2008
, unpublished.
29.
J.
Yu
,
Y.
Park
,
D.
Yum
,
J.
Kim
,
I.
Kong
, and
D.
Bai
,
Nucleotide sequence and analysis of a xylanase from alkali-tolerant Bacillus sp. YA-14 and comparison with other xylanase
.
Apll. Environ. Microbiol.
3
,
1991
, pp.
139
145
.
30.
M.L
Polizeli
,
T.M
,
Rizzatti
,
A.C.S.
,
Monti
,
R.
,
Fterenzi
,
H, J.A.
Jorge
and
D.S.
Amorin
,
Xylanases from fungi : properties and industrial application
,
Appl. Microbiol Biotechnol.
67
(
10
),
2005
, pp.
577
591
.
31.
D.B.
Haltrich
,
B.
Nidetzky
,
K.D.
Kulbe
,
W.
Steiner
and
Zupancic
,
Production of fungal xylanases
,
Bios. Technol.
58
, pp.
137
161
.
32.
Cho-Goo
,
J.H.
Suh
and
Y.I.
Choi
,
Overproduction, purification and characterization of Bacillus stearothmophilus Endp-xylanase A (xynA)
,
J. Microbiology and Biotechnology
6
,
1996
, pp.
79
85
.
33.
Sunna
and
G.
Antranikian
,
Xylanolytic enzyme from fungi and bacteria
.
Crit. Rev. In Bioetechnol.
17
(
1
),
1997
, pp.
39
67
.
34.
J.
Peres
,
J.
Munoz
,
Dorado
,
T
de la Rubia
and
J.
Martinez
,
Biodegradation and Biological Treatment of Cellulose, Hemiselullose and Lignin : An overview
,
Int. Microbiol
5
,
2002
, pp.
53
56
.
This content is only available via PDF.
You do not currently have access to this content.