Present work deals with torsional surface wave propagation in a viscoelastic isotropic layer with Voigt type viscosity sandwiched between inhomogeneous half spaces. Exponential variation in rigidity and density is taken in the upper half space, whereas inhomogeneities in the lower half space associated with rigidity and density are assumed to follow linear variation. Displacement components in the viscoelastic layer, upper and lower half spaces are found in closed form and used to derive the dispersion and absorption relations for torsional wave under the assumed geometry in terms of generalized implicit function. The effects of inhomogeneity, viscosity parameters and dimensionless wave number have been explored in numerical section and explained by suitable graphs.

1.
W. M.
Ewing
,
W. S.
Jardetzky
and
F.
Press
,
Mcgraw-Hill
,
New York
, (
1957
).
2.
L.
Rayleigh
,
Proceedings of the London Mathematical Society
,
17
,
4
11
, (
1885
).
3.
E.
Meissner
,
Viertelgahrsschriftder Naturforschenden Gesellschaft
,
66
,
181
195
, (
1921
).
4.
I.
Vardoulakis
,
International Journal for Numerical and Analytical Methods in Geomechanics
,
8,
287
296
, (
1984
).
5.
G.M.
Bo
, and
G.
Ronca
,
Mecánica
,
5
,
297
305
, (
1970
).
6.
S.
Dey
,
A. K.
Gupta
and
S.
Gupta
,
Journal of Acoustical Society of America
,
99
,
2737
2741
, (
1996a
).
7.
S.
Dey
,
A. K.
Gupta
, and
S.
Gupta
,
International Journal for Numerical and Analytical Methods in Geomechanics
,
20
,
209
213
, (
1996b
).
8.
S.
Dey
,
S.
Gupta
,
A. K.
Gupta
and
A. M.
Prasad
,
Acta Geophysica Plonica
,
49
,
113
118
, (
2001
).
9.
H. G.
Georgiadis
,
I.
Vardoulakis
, I. and
G.
Lykotrafitis
,
Wave Motion
,
31
,
333
348
, (
2000
).
10.
B. L. N.
Kennett
and
H.
Tkalčić
,
Australain Journal of Earth Science
,
55
,
265
279
, (
2008
).
11.
R. D.
Borcherdt
,
Journal of Acoustical Society of America
,
54
,
1651
1653
, (
1973
).
12.
G. D.
Manolis
and
R. P.
Shaw
, (
1996a
),
Soil Dynamics and Earthquake Engineering
,
15
,
119
127
, (1996a).
13.
G. D.
Manolis
and
R. P.
Shaw
,
Soil Dynamics and Earthquake Engineering
,
15
,
129
139
, (
1996b
).
14.
R. D.
Borcherdt
,
Cambridge University Press
, (
2009
).
15.
S. K.
Vishwakarma
and
S.
Gupta
,
International Journal of Applied Mathematics and Mechanics
,
8
,
38
50
, (
2012
).
16.
A.
Chattopadhyay
,
S.
Gupta
,
P.
Kumari
and
V. K.
Sharma
,
Meccanica
,
46
,
671
680
, (
2011
).
17.
A.
Chattopadhyay
,
S.
Gupta
,
P.
Kumari
and
V.K.
Sharma
,
International Journal for Numerical and Analytical Methods in Geomechanics
,
37
,
1280
1291
, (
2013
).
18.
M.
Sethi
,
K. C.
Gupta
and
M.
Rani
,
Mathematica Aeterna
,
2
,
879
900
, (
2012
).
19.
R.
Kakar
,
K.
Kaur
and
K. C.
Gupta
,
International Journal of Pure and Applied Sciences and Technology
,
14
,
39
49
, (
2013
).
20.
P.
Kumari
and
V.K.
Sharma
,
Acta Mechanica
,
225
,
1673
1684
, (
2014
).
21.
P.
Kumari
,
V. K.
Sharma
and
C.
Modi
,
Journal of Earthquake Engineering
, DOI: , (
2016
).
22.
E. T.
Whittaker
and
G. N.
Watson
,
Cambridge University Press
,
Cambridge
, (
1927
).
23.
D.
Gubbins
,
Cambridge University press
,
170
, (
1990
).
24.
P.
Caloi
,
Cent. Int. Bure. Seism
,
17
,
89
108
, (
1948
).
This content is only available via PDF.
You do not currently have access to this content.