For solving nonlinear continuous problems of optimization numerous nature inspired optimization techniques are being proposed in literature which can be implemented to solve real life problems wherein the conventional techniques cannot be applied. Grey Wolf Optimizer is one of such technique which is gaining popularity since the last two years. The objective of this paper is to investigate the performance of Grey Wolf Optimization Algorithm on large scale optimization problems. The Algorithm is implemented on 5 common scalable problems appearing in literature namely Sphere, Rosenbrock, Rastrigin, Ackley and Griewank Functions. The dimensions of these problems are varied from 50 to 1000. The results indicate that Grey Wolf Optimizer is a powerful nature inspired Optimization Algorithm for large scale problems, except Rosenbrock which is a unimodal function.

1.
Arora
,
J.
(
2017
). Introduction to Optimum Design.
Elsevier
, fourth edition, pp
739
769
.
2.
Bansal
,
J. C.
,
Sharma
,
H.
and
Clerc
.,
M.
(
2014
).
Spider Monkey Optimization Algorithm for Numerical Optimization
.
Memetic Computing
,
6
(
1
),
31
47
.
3.
Dorigo
,
M.
,
Maniezzo
,
V.
and
Colorni
,
A.
(
1991
).
The Ant System: An Autocatalytic Optimizing Process
.
Technical Report TR91-016, Politecnico di Milano.
4.
Formato
,
R
(
2008
).
Central Force Optimization: A New Nature Inspired Computational Framework for Multidimensional Search and Optimization
.
Nature Inspired Cooperative Strategies for Optimization (NICSO 2007
),
Italy
,
Series: Studies in Computational Intelligence, Springer
,
129
,
221
238
.
5.
Formato
,
R
(
2009
).
Central force optimization: A New Deterministic Gradient-Like Optimization Metaheuristic
.
OPSEARCH
,
46
(
1
),
25
51
.
6.
Geem
,
Z. W.
,
Kim
,
J. H.
and
Loganathan
,
G. V.
(
2001
).
A new heuristic optimization algorithm: Harmony search
.
Simulation
,
76
,
60
68
.
7.
Holland
,
J.
,H. (
1975
).
Adaptation in Natural and Artificial System
.
Ann Arbor
,
University of Michigan Press
.
8.
Jaddi
,
N. S.
,
Alvankarian
,
J.
, and
Abdullah
,
S.
(
2016
).
Kidney-inspired Algorithm for Optimization Problems
.
Communications in Nonlinear Science and Numerical Simulation
,
42
,
358
369
.
9.
Kar
,
A.
, K. (
2016
).
Bio inspired Computing – A Review of Algorithms and Scope of Applications
,
Expert Systems with Applications
,
59
,
20
32
.
10.
Karaboga
,
D.
(
2005
). An Idea Based On Honey Bee Swarm for Numerical Optimization’,
Technical Report-TR06
,
Erciyes University, Engineering Faculty, Computer Engineering Department
.
11.
Kennedy
,
J.
and
Eberhart
,
R.C.
(
1995
).
Particle swarm optimization
.
In Proceedings of IEEE International Conference Neural Networks
,
4
,
1942
1948
.
12.
Krishnanand
,
K. N.
and
Ghose
,
D.
(
2006
).
Glowworm Swarm Based Optimization Algorithm for Multimodal Functions with Collective Robotics Applications
.
Multiagent and Grid Systems
,
2
(
3
),
209
222
.
13.
Krishnanand
,
K. N.
and
Ghose
,
D.
(
2009
).
Glowworm Swarm Optimisation: A New Method for Optimising Multi-Modal Functions
.
International Journal of Computational Intelligence Studies
,
1
(
1
),
93
119
.
14.
Mehrabian
,
A. R.
, and
Lucas
,
C.
(
2006
).
A Novel Numerical Optimization Algorithm Inspired from Weed Colonization
.
Ecological Informatics
,
1
(
4
),
355
366
.
15.
Mirjalili
,
S.
(
2015
).
Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm
.
Knowledge-Based Systems
,
89
,
228
249
.
16.
Mirjalili
,
S.
(
2015
).
The Ant Lion Optimizer
.
Advances in Engineering Software
,
83
,
80
98
.
17.
Mirjalili
,
S.
,
Mirjalili
,
S., M.
, and
Lewis
,
A.
, (
2014
).
Grey Wolf Optimizer
.
Advances in Engineering Software
,
69
,
46
61
.
18.
Mirjalili
,
S.
,
S. M.
Mirjalili
,
A.
Lewis
,
Grey Wolf Optimizer
,
Advances in Engineering Software
, vol.
69
, pp.
46
61
,
2014
.
19.
Passino
,
K. M.
(
2002
).
Biomimicry of Bacterial Foraging for Distributed Optimization and Control
.
IEEE Control Systems Magazine
,
52
67
.
20.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Vakharia
,
D. P.
(
2011
).
Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
.
Computer-Aided Design
,
43
(
3
),
303
315
.
21.
Rashedi
,
E.
,
Nezamabadi-Pour
,
H.
and
Saryazdi
,
S.
(
2009
).
GSA: A Gravitational Search Algorithm
,
Information Sciences
,
179
(
13
),
2232
2248
.
22.
Shah-Hosseini
,
H.
(
2008
).
Optimization with the Nature-Inspired Intelligent Water Drops Algorithm
.
International Journal of Intelligent Computing and Cybernetics
,
1
(
2
),
193
212
.
23.
Storn
,
R.
and
Price
,
K.
(
1995
). Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces.
Technical Report TR-95-012
,
Berkeley, CA
.
24.
Tan
,
Y.
, and
Zhu
,
Y.
(
2010
, June).
Fireworks Algorithm for Optimization
.
In International Conference in Swarm Intelligence, Springer Berlin Heidelberg
,
355
364
.
25.
Yang
,
X.
, S., (
2014
). Nature-Inspired Optimization Algorithms.
Elsevier
, first edition, p
263
.
26.
Yang
,
X.,S.
,
Chien
,
S.,F.
, and
Ting
,
T.O.
(
2015
).Bio-Inspired Computation in Telecommunications.
Morgan Kauffman
, pp
1
21
.
27.
Yadav
,
Anupam
,
Kusum
Deep
,
JoongHoon
Kim
, and
Atulya K.
Nagar
. “
Gravitational swarm optimizer for global optimization
.”
Swarm and Evolutionary Computation
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.