We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

1.
B.
Forte
and
E.
Vrscay
,
Dynamics of Continuous, Discrete and Impulsive Systems
1
,
177
231
(
1995
).
2.
H.
Kunze
,
D. L.
Torre
, and
E.
Vrscay
,
Applied Mathematics Letters
25
,
2306
2311
(
1995
).
3.
H.
Kunze
,
D. L.
Torre
, and
E.
Vrscay
,
Image Analysis and Stereology
32
,
183
188
(
2013
).
4.
D. L.
Torre
and
E.
Vrscay
,
AIP Conference Proceedings
1443
,
63
71
(
2012
).
5.
M.
Barnsley
,
V.
Ervin
,
D.
Hardin
, and
J.
Lancaster
,
Proc Nat Acad Sci USA
1975
1977
(
1985
).
6.
M.
Barnsley
and
L.
Hurd
,
Fractal image compression
(
Massachussetts
:
A.K. Peters
,
1993
).
7.
Y.
Fisher
,
Fractal image compression
(
New York
:
Springer-Verlag
,
1995
).
8.
N.
Liu
,
Fractal imaging
(
New York
:
Academic Press
,
2003
).
9.
M.
Ghazel
,
G.
Freeman
, and
E.
Vrscay
,
IEEE Trans Image Proc
1560
1578
(
2003
).
10.
D. L.
Torre
,
E.
Vrscay
,
E.
Ebrahimi
, and
M.
Barnsley
,
SIAM Journal on Imaging Sciences
2
,
470
507
(
2009
).
11.
D. L.
Torre
and
E.
Vrscay
,
Nonlinear Analysis
71
,
e1598
e1607
(
2009
).
12.
F.
Preparata
and
M.
Shamos
,
Computational geometry: an introduction
(
Springer-Verlag
,
1985
).
13.
B.
Natarajan
,
SIAM Journal on Computing
24
,
227
234
(
1995
).
14.
R.
Tibshirani
,
Journal of the Royal Statistical Society. Series B (Methodological)
267
288
(
1996
).
15.
M.
Elad
,
Sparse and redundant representations: from theory to applications in signal and image processing
(
Springer
,
2010
).
16.
E. J.
Candes
and
T.
Tao
,
IEEE Transactions on Information Theory
51
,
4203
4215
(
2005
).
17.
D. L.
Donoho
and
X.
Huo
,
IEEE Transactions on Information Theory
47
,
2845
2862
(
2001
).
18.
R.
Gribonval
and
M.
Nielsen
,
IEEE Transactions on Information Theory
49
,
3320
3325
(
2003
).
19.
T.
Cover
and
J.
Thomas
,
Elements of Information Theory
(
Wiley
,
2006
).
20.
R.
Fletcher
, in
Nonlinear Optimization
, Lecture Notes in Mathematics, edited by
G. D.
Pillo
and
F.
Schoen
(
Springer
,
2010
), pp.
165
214
.
21.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
(
Springer
,
New York
,
2006
).
This content is only available via PDF.
You do not currently have access to this content.