The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E > 100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolution and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE γ-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays “knee” (E ∼ 1015 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.

1.
M.
Actis
and et al.,
Experimental Astronomy
32
,
193
316
(
2011
).
2.
B. S.
Acharya
and et al.,
Astroparticle Physics
43
,
3
18
(
2013
).
3.
N. La
Palombara
and et al., “The INAF ASTRI Project in the framework of CTA,” in
Astroparticle, Particle, Space Physics and Detectors for Physics Applications - Proceedings of the 14th ICATPP Conference
, edited by
S.
Giani
and et al.
(
2014
), pp.
754
758
.
4.
S.
Vercellone
,
for The ASTRI Collaboration, and f. T. CTA Consortium
, (
2015
), arXiv:1508.00799.
5.
V.
Vassiliev
,
S.
Fegan
, and
P.
Brousseau
,
Astroparticle Physics
28
,
10
27
(
2007
).
6.
S.
Vercellone
and et al., (
2013
), arXiv:1307.5671.
7.
J.
Knödlseder
and et al.,
A&A
593
, p.
A1
(
2016
).
8.
T.
Hassan
and et al., (
2015
), arXiv:1508.06075.
9.
A.
Lyne
and et al.,
Nature
381
,
497
498
(
1996
).
10.
A. A.
Abdo
and et al.,
ApJ
713
,
154
165
(
2010
).
11.
A.
Abramowski
and et al.,
A&A
548
, p.
A38
(
2012
).
12.
F.
Aharonian
and et al.,
A&A
448
,
L43
L47
(
2006
).
13.
O. C.
de Jager
,
P. O.
Slane
, and
S.
LaMassa
,
ApJ
689
,
L125
L128
(
2008
).
14.
A. A.
Abdo
and et al.,
ApJ
713
,
146
153
(
2010
).
15.
M.-H.
Grondin
and et al.,
ApJ
774
, p.
110
(
2013
).
16.
D.
Horns
and et al.,
A&A
451
,
L51
L54
(
2006
).
17.
D. C.-J.
Bock
,
M. I.
Large
, and
E. M.
Sadler
,
AJ
117
,
1578
1593
(
1999
).
18.
19.
W.
Voges
and et al.,
A&A
349
,
389
405
(
1999
).
20.
F.
Aharonian
and et al.,
ApJ
692
,
1500
1505
(
2009
).
21.
22.
M.
Ajello
and et al.,
ApJ
819
, p.
98
(
2016
).
23.
H. E. S. S.
Collaboration
and et al., (
2016
), arXiv:1601.04461.
24.
A.
Giuliani
and et al.,
A&A
516
, p.
L11
(
2010
).
25.
A. A.
Abdo
and et al.,
ApJ
718
,
348
356
(
2010
).
26.
F.
Aharonian
and et al.,
A&A
481
,
401
410
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.