The Picard code for the numerical solution of the Galactic cosmic ray propagation problem allows for high-resolution models that acknowledge the 3D structure of our Galaxy. Picard was used to determine diffuse gamma-ray emission of the Galaxy over the energy range from 100 MeV to 100 TeV. We discuss the impact of a cosmic-ray source distribution aligned with the Galactic spiral arms for a range of such spiral-arm models. As expected, the impact on the gamma-ray emission is most distinct in the inverse-Compton channel, where imprints of the spiral arms are visible and yield predictions that are no longer symmetric to the rotational axis of the Milkyway. We will illustrate these differences by a direct comparison to results from previous axially symmetric Galactic propagation models: we find differences in the gamma-ray flux both on global scales and on local scales related to the spiral arm tangents. We compare gamma-ray flux and spectra at on-arm vs. off-arm projections and characterize the differences to axially symmetric models.

1.
D.
Benyamin
,
E.
Nakar
,
T.
Piran
, et al 
Recovering the Observed B/C Ratio in a Dynamic Spiral-armed Cosmic Ray Model
.
ApJ
,
782
:
34
, February
2014
.
2.
F.
Effenberger
,
H.
Fichtner
,
K.
Scherer
, et al 
Anisotropic diffusion of Galactic cosmic ray protons and their steady-state azimuthal distribution
.
A&A
,
547
:
A120
, November
2012
.
3.
D.
Gaggero
,
L.
Maccione
,
G.
Di Bernardo
, et al 
Three-Dimensional Model of Cosmic-Ray Lepton Propagation Reproduces Data from the Alpha Magnetic Spectrometer on the International Space Station
.
Physical Review Letters
,
111
(
2
):
021102
, July
2013
.
4.
G.
Jóhannesson
,
I. V.
Moskalenko
, and
T.
Porter
.
Toward 3D mapping of the interstellar medium in the Milky Way: impact on cosmic rays and diffuse emission
.
Proceedings of the 33rd International Cosmic Ray Conference
,
2013
.
5.
M.
Werner
,
R.
Kissmann
,
A. W.
Strong
, et al 
Spiral arms as cosmic ray source distributions
.
Astroparticle Physics
,
64
:
18
33
, April
2015
.
6.
G.
Jóhannesson
,
I. V.
Moskalenko
,
E.
Orlando
, et al 
The Effects of Three Dimensional Structures on Cosmic-Ray Propagation and Interstellar Emissions
.
7.
J. P.
Vallée
.
Catalog of Observed Tangents to the Spiral Arms in the Milky Way Galaxy
.
ApJS
,
215
:
1
, November
2014
.
8.
M.
Pohl
,
P.
Englmaier
, and
N.
Bissantz
.
Three-Dimensional Distribution of Molecular Gas in the Barred Milky Way
.
ApJ
,
677
:
283
291
, April
2008
.
9.
K.
Ferrière
and
P.
Terral
.
Analytical models of X-shape magnetic fields in galactic halos
.
A&A
,
561
:
A100
, January
2014
.
10.
R.
Jansson
and
G. R.
Farrar
.
A New Model of the Galactic Magnetic Field
.
ApJ
,
757
:
14
, September
2012
.
11.
N. J.
Shaviv
.
The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth
.
New A
,
8
:
39
77
, January
2003
.
12.
A.
Kopp
,
I.
Büsching
,
M. S.
Potgieter
, et al 
A stochastic approach to Galactic proton propagation: Influence of the spiral arm structure
.
New A
,
30
:
32
37
, July
2014
.
13.
R.
Kissmann
,
M.
Werner
,
O.
Reimer
, et al 
Propagation in 3D spiral-arm cosmic-ray source distribution models and secondary particle production using PICARD
.
Astroparticle Physics
,
70
:
39
53
, October
2015
.
14.
R.
Kissmann
.
PICARD: A novel code for the Galactic Cosmic Ray propagation problem
.
Astroparticle Physics
,
55
:
37
50
, March
2014
.
15.
U.
Trottenberg
,
C. W.
Ooosterlee
, et al 
Multigrid
.
Academic Press, Inc.
,
Orlando, FL, USA
,
2001
.
16.
Gerard LG
Sleijpen
and
Diederik R
Fokkema
.
Bicgstab (l) for linear equations involving unsymmetric matrices with complex spectrum
.
Electronic Transactions on Numerical Analysis
,
1
(
11
):
2000
,
1993
.
17.
C.
Evoli
,
D.
Gaggero
,
D.
Grasso
, et al 
Common Solution to the Cosmic Ray Anisotropy and Gradient Problems
.
Physical Review Letters
,
108
(
21
):
211102
, May
2012
.
18.
F.
Effenberger
,
H.
Fichtner
,
K.
Scherer
, et al 
A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field
.
ApJ
,
750
:
108
, May
2012
.
19.
F.
Niederwanger
,
R.
Kissmann
,
O.
Reimer
, et al The use case of a new Interstellar Radiation Field for Diffuse Galactic Gamma-ray Emission Models. In
F. A.
Aharonian
,
W.
Hofmann
, and
F. M.
Rieger
, editors,
American Institute of Physics Conference Series
,
American Institute of Physics Conference Series
.
2016
.
20.
A. W.
Strong
,
I. V.
Moskalenko
, and
O.
Reimer
.
Diffuse Continuum Gamma Rays from the Galaxy
.
ApJ
,
537
:
763
784
, July
2000
.
21.
T. A.
Porter
,
I. V.
Moskalenko
,
A. W.
Strong
, et al 
Inverse Compton Origin of the Hard X-Ray and Soft Gamma-Ray Emission from the Galactic Ridge
.
ApJ
,
682
:
400
407
, July
2008
.
22.
C. C.
Popescu
and
R. J.
Tuffs
.
Radiation fields in star-forming galaxies: the disc, thin disc and bulge
.
MNRAS
,
436
:
1302
1321
, December
2013
.
23.
T. Y.
Steiman-Cameron
,
M.
Wolfire
, and
D.
Hollenbach
.
COBE and the Galactic Interstellar Medium: Geometry of the Spiral Arms from FIR Cooling Lines
.
ApJ
,
722
:
1460
1473
, October
2010
.
24.
F.
Acero
,
M.
Ackermann
,
M.
Ajello
, et al 
Fermi Large Area Telescope Third Source Catalog
.
ApJS
,
218
:
23
, June
2015
.
25.
M.
Ackermann
,
M.
Ajello
,
W. B.
Atwood
, et al 
2FHL: The Second Catalog of Hard Fermi-LAT Sources
.
ApJS
,
222
:
5
, January
2016
.
26.
F.
Aharonian
,
A. G.
Akhperjanian
,
A. R.
Bazer-Bachi
, et al 
The H.E.S.S. Survey of the Inner Galaxy in Very High Energy Gamma Rays
.
ApJ
,
636
:
777
797
, January
2006
.
This content is only available via PDF.
You do not currently have access to this content.