Recent reports claiming tentative association of the massive star binary system γ2 Velorum (WR 11) with a high-energy γ-ray source observed by Fermi-LAT contrast the so-far exclusive role of η Carinae as the hitherto only detected γ-ray emitter in the source class of particle-accelerating colliding-wind binary systems. We aim to shed light on this claim of association by providing dedicated model predictions for the nonthermal photon emission spectrum of WR 11.

We use three-dimensional magneto-hydrodynamic modeling to trace the structure and conditions of the wind-collision region of WR 11 throughout its 78.5 day orbit, including the important effect of radiative braking in the stellar winds. A transport equation is then solved in the wind-collision region to determine the population of relativistic electrons and protons which are subsequently used to compute nonthermal photon emission components.

We find that – if WR 11 be indeed confirmed as the responsible object for the observed γ-ray emission – its radiation will unavoid-ably be of hadronic origin owing to the strong radiation fields in the binary system which inhibit the acceleration of electrons to energies sufficiently high for observable inverse Compton radiation. Different conditions in wind-collision region near the apastron and periastron configuration lead to significant variability on orbital time scales. The bulk of the hadronic γ-ray emission originates at a ∼400 R wide region at the apex.

1.
P.
Benaglia
and
G. E.
Romero
,
A&A
399
,
1121
1134
, March (
2003
).
2.
A.
Reimer
,
M.
Pohl
, and
O.
Reimer
,
ApJ
644
,
1118
1144
, June (2006).
3.
J. M.
Pittard
 et al,
A&A
446
,
1001
1019
, February (2006).
4.
M.
Werner
 et al,
A&A
555
, p.
A102
, July (
2013
).
5.
M.
Tavani
 et al,
ApJ Letters
698
,
L142
L146
, June (
2009
).
6.
K.
Reitberger
,
A.
Reimer
,
O.
Reimer
, and
H.
Takahashi
,
A&A
577
, p.
A100
, May (
2015
).
7.
M. S.
Pshirkov
,
MNRAS
457
,
L99
L102
, March (
2016
).
8.
F.
Acero
 et al,
ApJS
218
, p.
23
, June (
2015
).
9.
M.
De Becker
and
F.
Raucq
,
A&A
558
, p.
A28
, October (
2013
).
10.
J. R.
North
,
P. G.
Tuthill
,
W. J.
Tango
, and
J.
Davis
,
MNRAS
377
,
415
424
, May (
2007
).
11.
K.
Reitberger
,
R.
Kissmann
,
A.
Reimer
,
O.
Reimer
, and
G.
Dubus
,
ApJ
782
, p.
96
, February (
2014
).
12.
R.
Kissmann
,
K.
Reitberger
,
O.
Reimer
,
A.
Reimer
, and
E.
Grimaldo
, arXiv:1609.01130, accepted for publication xin
ApJ
, September (
2016
).
13.
J.
Kleimann
,
A.
Kopp
,
H.
Fichtner
, and
R.
Grauer
,
ANNALES GEOPHYSICAE
27
,
989
1004
(
2009
).
14.
A.
Pauldrach
,
J.
Puls
, and
R. P.
Kudritzki
,
A& A
164
,
86
100
, August (
1986
).
15.
K.
Reitberger
,
R.
Kissmann
,
A.
Reimer
, and
O.
Reimer
,
ApJ
789
, p.
87
, July (
2014
).
16.
D. B.
Henley
,
I. R.
Stevens
, and
J. M.
Pittard
,
MNRAS
356
,
1308
1326
, February (
2005
).
17.
E. R.
Parkin
 et al,
MNRAS
394
,
1758
1774
, April (
2009
).
18.
J. M.
Pittard
,
MNRAS
396
,
1743
1763
, July (
2009
).
19.
E. R.
Parkin
,
J. M.
Pittard
,
M. F.
Corcoran
, and
K.
Hamaguchi
,
ApJ
726
, p.
105
, January (
2011
).
20.
T. I.
Madura
 et al,
MNRAS
436
,
3820
3855
, December (
2013
).
21.
I. R.
Stevens
and
A. M. T.
Pollock
,
MNRAS
269
, p.
226
, July (
1994
).
22.
S. P.
Owocki
and
K. G.
Gayley
,
ApJ
454
, p.
L145
, December (
1995
).
23.
K. G.
Gayley
,
S. P.
Owocki
, and
S. R.
Cranmer
,
ApJ
475
, p.
786
, February (
1997
).
24.
A.
ud-Doula
and
S. P.
Owocki
,
ApJ
576
,
413
428
, September (
2002
).
25.
J. G.
Kirk
,
F. M.
Rieger
, and
A.
Mastichiadis
,
A&A
333
,
452
458
, May (
1998
).
26.
A. W.
Strong
,
I. V.
Moskalenko
, and
V. S.
Ptuskin
,
Annual Review of Nuclear and Particle Science
57
,
285
327
, November (
2007
).
27.
W.
Schmutz
 et al,
A&A
328
,
219
228
, December (1997).
This content is only available via PDF.
You do not currently have access to this content.