High-velocity clouds (HVCs) are HI clouds with velocities of more than 100 km s−1. These clouds do not partake of the differential Galactic rotation; a significant fraction of them are falling down towards the Galactic disk. The typical mass of these clouds is ∼ 104 M, so in a collision with the disk energies of the order of ∼ 1051 erg can be released into the interstellar medium. Such collisions should produce strong shocks propagating through both the cloud and the disk. Under adequate conditions, these shocks can accelerate particles up to relativistic energies by Fermi mechanism. In this work, we study the hydrodynamical inter-actions and the relevant radiative processes (thermal and non-thermal) associated with HVC-disk collisions. We find that a shock propagating through a typical cloud should give rise to significant non-thermal radio emission, whereas the protons accelerated there diffuse and might emit elsewhere. A shock propagating through the disk, on the other hand, produces extended gamma-ray emission and injects protons with energies from 10 GeV to ∼1 TeV. Taking into account the injected mass rate of HI in our Galaxy by cloud bombardement, we found that ∼ 10 % of the Galactic cosmic ray power could be generated by these cloud-disk collisional events.

1.
J.
Kerp
,
W. B.
Burton
,
R.
Egger
,
M. J.
Freyberg
,
D.
Hartmann
,
P. M. W.
Kalberla
,
U.
Mebold
,
J.
Pietz
, and
F.
Palla
,
A&A
342
, p.
213
(
1999
).
2.
A.
Santillán
,
J.
Franco
, and
M.
Martos
,
ApJ
515
, p.
657
(
1999
).
3.
G.
Park
,
B.-C.
Koo
,
J.-h.
Kang
,
S. J.
Gibson
,
J. E. G.
Peek
,
K. A.
Douglas
,
E. J.
Korpela
, and
C. E.
Heiles
,
ApJL
827
, p.
L27
(
2016
).
4.
G.
Tenorio-Tagle
,
A&A
94
, p.
338
344
(
1980
).
5.
L.
Tibaldo
,
S. W.
Digel
,
J. M.
Casandjian
,
A.
Franckowiak
,
I. A.
Grenier
,
G.
Jóhannesson
,
D. J.
Marshall
,
I. V.
Moskalenko
,
M.
Negro
,
E.
Orlando
,
T. A.
Porter
,
O.
Reimer
, and
A. W.
Strong
,
ApJ
807
, p.
161
(
2015
).
6.
J.
Raymond
,
P. D.
Cox
, and
B. W.
Smith
,
ApJ
204
, p.
290
(
1976
).
7.
A. V.
Myasnikov
,
S. A.
Zhekov
, and
N. A.
Belov
,
MNRAS
298
, p.
1021
1029
(
1998
).
8.
H. M.
Lee
,
H.
Kang
, and
D.
Ryu
,
ApJ
464
, p.
131
140
(
1996
).
9.
G. E.
Romero
and
J. M.
Paredes
,
Introducción a la Astrofísica Relativista
(
Publicacions i Edicions de la Universitat de Barcelona
,
2011
).
10.
R.
Beck
and
R.
Wielebinski
, in
Planets, Stars and Stellar Systems
, edited by
T. D.
Oswalt
and
G.
Gilmore
(
Springer
Netherlands
,
2013
) p.
641
723
.
11.
N. M.
McClure-Griffiths
,
G. J.
Madsen
,
B. M.
Gaensler
,
D.
McConnell
, and
D. H. F. M.
Schnitzeler
,
ApJ
725
, p.
275
281
(
2010
).
12.
V. L.
Ginzburg
and
S. I.
Syrovatskii
,
The Origin of Cosmic Rays
(
Macmillan
,
1964
).
13.
F. A.
Aharonian
and
A. M.
Atoyan
,
A&A
362
, p.
937
952
(
2000
).
14.
S.
Gabici
,
F. A.
Aharonian
, and
P.
Blasi
,
Ap& SS
309
, p.
365
371
(
2007
).
15.
P.
Richter
,
ApJ
750
, p.
165
(
2012
).
16.
L. O.
Drury
,
Rep. Prog. Phys.
46
, p.
973
1027
(
1983
).
17.
G. R.
Blumenthal
and
R. J.
Gould
,
Rev. Mod. Phy.
42
, p.
237
271
(
1970
).
18.
A. T.
Araudo
, “
Non-thermal radiation associated with astrophysical shock waves
,” Ph.D. thesis,
Universidad Nacional de La Plata
2010
.
19.
T. K.
Gaisser
,
Cosmic Rays and Particle Physics
(
Cambridge University Press
,
1990
).
This content is only available via PDF.
You do not currently have access to this content.