This paper considers the problem of model order reduction of nonlinear affine systems by using Krylov subspace projection. The nonlinear affine system is described with the concepts of differential geometry. The main properties of such systems are shown and the tools for reachability and observability analysis are provided. The main features of the Krylov subspace projection methods are presented and the extension of these methods in the nonlinear case are developed. The presented method uses the concept of nonlinear reachability and observability distributions and implements the Gram-Schmidt orthogonalization procedure on the members of these distributions. The main difference with the linear methods is that the orthogonalization procedure is im-plemented directly on the distribution elements, while in the linear case the orthogonalization is performed iteratively by using the system matrices. The performance of the presented method is demonstrated by numerical examples.

1.
Antoulas
,
A.
,
Approximation of large-scale dynamical systems
,
SIAM Publ.
,
Philadelphia
,
2005
.
2.
Arnoldi
,
W.
, “
The principle of minimized iterations in the solution of the matrix eigenprobelm
”,
Quart. Appl. Math.
,
9
, pp.
17
29
,
1951
.
3.
Bai
,
Z.
, “
Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems
”,
Appl. Num. Math.
,
43
, pp.
9
44
,
2002
.
4.
Benner
,
P.
,
T.
Breiten
, “
Interpolation based H2 model reduction of bilinear control systems
”,
SIAM J. Matr. Analysis Appl.
, vol.
33
, pp.
859
885
,
2012
.
5.
Flag
,
G.
,
S.
Gugercin
, “
Multipoint Volterra series interpolation and H2 optimal model reduction of bilinear systems
”,
SIAM J. Matr. Analysis Appl.
, vol.
36
,
12
, pp.
549
579
,
2015
.
6.
Freund
,
R.
, “
Krylov subspace methods for reduced-order modelin in circuit simulation
”,
J. Comp. Appl. Math.
,
123
, pp.
395
421
,
2000
.
7.
Fujimoto
,
K.
,
J.
Scherpen
, “Singular value analysis and balanced realization for nonlinear systems”, in
Model order reduction. Theory, research aspects and applications
, edts.
Schilders
,
W.
,
H.
van der Vorst
and
J.
Rommes
,
Springer
, pp.
251
272
,
2008
.
8.
Gallivan
,
K.
,
E.
Grimme
, “
A rational Lanczos algorithm for model reduction
”,
Numer. Algor.
, vol.
12
,
1
, pp.
33
63
,
1996
.
9.
Gallivan
,
K.
,
E.
Grimme
,
P.
van Dooren
, “Pade approximation of large-scale dynamic systems with Lanczos method”,
Proceedings of the 33rd Conference on Decision and Control
,
Lake Buena Vista, FL.
, pp.
443
448
,
1994
.
10.
Gray
,
W.
,
E.
Verriest
, “
Balanced realizations near stable invariant manifolds
”,
Automatica
,
42
, pp.
653
659
,
2006
.
11.
Isidori
,
A.
,
Nonlinear control systems
,
Springer-Verlag
,
N.Y.
,
1989
12.
Lancaster
,
P.
,
Theory of matrices
,
Academic Press
,
N.Y.
,
1969
.
13.
Lanczos
,
C.
, “
An iteration method for the solution of the eigenvalue problem of linear differentil and integral operators
”,
J. Res. Nat. Bur. Stand.
,
45
, pp.
255
282
,
1950
.
14.
Newman
,
A.
,
P.
Krishnaprasad
, “Computing balanced realizations for nonlinear systems”,
Proceedings of 14th Int. Symp. Math. Theory Netw. Syst.
,
Perpignon
,
2000
.
15.
Perev
,
K.
, “
The unifying feature of projection in model order reduction
”,
Information technologies and control
, vol.
12
, (
3-4
,) pp.
17
27
,
2014
.
16.
Perev
,
K.
, “Balanced truncation of nonlinear systems with error bounds”,
AIP Conference Proceedings: Application of Mathematics in Engineerings and Economics, AMEE’12
,
Sozopol
, (vol.
1497
) 1, pp.
26
36
,
2012
.
17.
Scherpen
,
J.
, “
Balancing for nonlinear systems
”,
Systems and Control Letters
,
21
, pp.
143
153
,
1993
.
18.
Verriest
,
E.
, “Time variant balancing and nonlinear balanced realizations”, in
Model order reduction. Theory, research aspects and applications
, edts.
Schilders
,
W.
,
H.
van der Vorst
and
J.
Rommes
,
Springer
, pp.
303
315
,
2011
.
19.
Verriest
,
E.
, “An approach to nonlinear balancing and MOR”, in
Model reduction for circuit simulation
, edts.
Benner
,
P.
,
M.
Hinze
,
E. Jan Ter
Maten
,
Springer
, pp.
213
250
,
2008
.
20.
Vidyasagar
,
M.
,
Nonlinear systems analysis
,
Prentice Hall
,
Englewood Cliffs
,
1993
.
This content is only available via PDF.
You do not currently have access to this content.