In the paper Neumann type boundary value problems for inhomogeneous biharmonic equation are studied. Necessary and sufficient conditions on solvability of the considered problems are established.

1.
Dang
,
Q. A.
, “
Iterative method for solving the Neumann boundary problem for biharmonic type equation
”.
J. Comput. Appl. Math.
196
(
2
),
634
643
(
2006
).
2.
Karachik
,
V. V.
, “
Solvability conditions for the Neumann problem for the homogeneous polyharmonic equation
”.
Differential Equations
.
50
(
11
),
1449
1456
(
2014
).
3.
Karachik
,
V. V.
, “
On the arithmetic triangle arising from the solvability conditions for the Neumann problem
”.
Mathematical Notes
.
96
(
1-2
),
217
227
(
2014
).
4.
Dang
,
Q.A.
,
Mai
X.T.
, “
Iterative method for solving a problem with mixed boundary conditions for biharmonic equation arising in fracture mechanics
”.
Boletim da Sociedade Paranaense de Matematica
.
31
(
1
),
65
78
(
2013
).
5.
Karachik
,
V. V.
,
Antropova
,
N. A.
, “
Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball
”.
Differential Equations
.
49
(
2
),
251
256
(
2013
).
6.
Matevosyan
,
O. A.
, “
Solution of a mixed boundary value problem for the biharmonic equation with finite weighted Dirichlet integral
”.
Differential Equations
.
51
(
4
),
487
501
(
2015
).
7.
Gomez-Polanco
,
A.
,
Guevara-Jordan
,
J. M.
,
Molina
,
B.
, “
A mimetic iterative scheme for solving biharmonic equations
”.
Mathematical and Computer Modelling
.
57
(
9-10
),
2132
2139
(
2013
).
8.
Lai
,
M-C.
,
Liu
,
H-C.
, “
Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows
”,
Appl. Math. Comput.
164
(
3
),
679
695
(
2005
).
9.
Karachik
,
V. V.
, “
Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball
”.
Computational Mathematics and Mathematical Physics
.
54
(
7
),
1122
1143
(
2014
).
10.
Karachik
,
V. V.
, “
Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball
”.
Differential Equations
.
51
(
8
),
1033
1042
(
2015
).
11.
Karachik
,
V. V.
,
Turmetov
,
B. Kh.
,
Bekaeva
,
A.
, “
Solvability conditions of the Neumann boundary value problem for the biharmonic equation in the unit ball
”.
International Journal of Pure and Applied Mathematics
.
81
(
3
),
487
495
(
2012
).
12.
Turmetov
,
B.Kh.
,
Ashurov
,
R.R.
, “
On Solvability of the Neumann Boundary Value Problem for Non-homogeneous Biharmonic Equation
”.
British Journal of Mathematics & Computer Science
4
(
4
),
557
571
(
2014
).
13.
Kanguzhin
,
B. E.
,
Koshanov
,
B. D.
, “
Necessary and sufficient conditions of solvability of boundary value problems for inhomogeneous polyharmonic equation in a ball
”.
Ufa Math. J.
2
(
2
),
41
52
(
2010
).
14.
Karachik
,
V. V.
,
Sadybekov
,
M. A.
,
Torebek
,
B. T.
, “
Uniqueness of solutions to boundary-value problems for the biharmonic equation in a ball
”.
Electronic Journal of Differential Equations
.
2015
(
244
),
1
9
(
2015
).
15.
Karachik
,
V. V.
, “
On solvability conditions for the Neumann problem for a polyharmonic equation in the unit ball
”.
Journal of Applied and Industrial Mathematics
.
8
(
1
),
63
75
(
2014
).
16.
Karachik
,
V. V.
, “
A problem for the polyharmonic equation in the sphere
”.
Siberian Mathematical Journal
.
32
(
5
),
767
774
(
1991
).
17.
Karachik
,
V. V.
, “
On the mean value property for polyharmonic functions in the ball
”.
Siberian Advances in Mathematics
.
24
(
3
),
169
182
(
2014
).
18.
Karachik
,
V. V.
, “
Construction of polynomial solutions to some boundary value problems for Poissons equation
”.
Computational Mathematics and Mathematical Physics
.
51
(
9
),
1567
1587
(
2011
).
19.
Karachik
,
V. V.
, “
On one set of orthogonal harmonic polynomials
”.
Proceedings of American Mathematical Society
.
126
(
12
),
3513
3519
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.