In this work, we discuss the generalization of the hybrid Monte Carlo schemes proposed in [1, 2] to the challenging case of the Boltzmann equation. The proposed schemes are designed in such a way that the number of particles used to describe the solution decreases when the solution approaches the equilibrium state and consequently the statistical error decreases as the system approaches this limit. Moreover, as opposite to standard Monte Carlo methods which computational cost increases with the number of collisions, here the time step and thus also the computational cost is independent from the collisional scale. Thanks to the local coupling of Monte Carlo techniques for the solution of the Boltzmann equation with macroscopic numerical methods for the compressible Euler equations, the scheme degenerates to a finite volume scheme for the compressible Euler equations in the limit of an infinite number of collisions without introducing any artificial transition. A simple applications to one-dimensional Boltzmann equation is presented to show the performance of the new method.

1.
P.
Degond
,
G.
Dimarco
, and
L.
Pareschi
,
Int. J. Numer. Meth. Fl.
67
,
189
213
(
2011
).
2.
G.
Dimarco
and
L.
Pareschi
,
SIAM Multiscale Model Sim.
6
,
1169
1197
(
2007
).
3.
G. A.
Bird
,
Molecular Gas Dynamics and direct simulation of gas flows
(
Clarendon Press
,
Oxford
,
1994
).
4.
C.
Cercignani
,
The Boltzmann Equation and Its Applications
(
Springer
,
New-York
,
1988
).
5.
R. E.
Caflisch
,
Acta Numerica
7
,
1
49
(
1998
).
6.
K.
Nanbu
,
J. Phys. Soc. Japan
49
,
2042
2049
(
1980
).
7.
G.
Dimarco
and
L.
Pareschi
,
Acta Numerica
32
,
369
520
(
2014
).
8.
R.
Caflisch
,
C.
Wang
,
G.
Dimarco
,
B.
Cohen
, and
A.
Dimits
,
Multiscale Model Sim.
7
,
865
887
(
2008
).
9.
A.
Crestetto
,
N.
Crouseilles
, and
M.
Lemou
,
Kin. Rel. Models
5
,
787
816
(
2012
).
10.
G.
Dimarco
and
L.
Pareschi
,
SIAM J. Sci. Comput.
32
,
603
634
(
2010
).
11.
G.
Dimarco
,
Kin. Rel. Models
6
,
291
315
(
2013
).
12.
T.
Homolle
and
N.
Hadjiconstantinou
,
J. Comp. Phys.
226
,
2341
2358
(
2007
).
13.
L.
Pareschi
and
R. E.
Caflisch
,
J. Comput. Phys.
154
,
90
116
(
1999
).
14.
G. A.
Radtke
,
J.-P. M.
Peraud
, and
N.
Hadjiconstantinou
,
Phil. Trans. Royal Soc. A
371
, p.
2012182
(
2013
).
15.
B.
Yan
and
R.
Caflisch
,
J. Comput. Phys.
298
,
711
740
(
2015
).
16.
B.
Yan
,
J. Comput. Phys.
309
,
18
36
(
2016
).
17.
R.
Caflisch
and
L.
Pareschi
,
IMA Vol. Math. Appl.
135
(
Springer
,
New York
,
2004
), pp.
57
73
.
18.
R.
Caflisch
,
H.
Chen
,
E.
Luo
, and
L.
Pareschi
, “A hybrid method that interpolates between dsmc and cfd,” (
American Institute of Aeronautics and Astronautics
,
Reno
,
2006
), pp.
2006
987
.
19.
R.
Caflisch
,
G.
Dimarco
, and
L.
Pareschi
,
Hybrid monte carlo methods for the boltzmann equation
. (Work in progress).
20.
G.
Dimarco
and
L.
Pareschi
,
SIAM J. Numer. Anal.
49
,
2057
2077
(
2011
).
21.
G.
Dimarco
and
L.
Pareschi
,
SIAM J. Numer. Anal.
51
,
1064
1087
(
2013
).
22.
B.
Perthame
,
SIAM J. Numer. Anal.
29
,
1
19
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.