The performance of a novel maximum-entropy-based 14-moment interpolative closure is examined for multi-dimensional flows via validation of the closure for several established benchmark problems. Despite its consideration of heat transfer, this 14-moment closure contains closed-form expressions for the closing fluxes, unlike the maximum-entropy models on which it is based. While still retaining singular behaviour in some regions of realizable moment space, the interpolative closure proves to have a large region of hyperbolicity while remaining computationally tractable. Furthermore, the singular nature has been shown to be advantageous for practical simulations. The multi-dimensional cases considered here include Couette flow, heat transfer between infinite parallel plates, subsonic flow past a circular cylinder, and lid-driven cavity flow. The 14-moment predictions are compared to analytical, DSMC, and experimental results as well the results of other closures. For each case, a range of Knudsen numbers are explored in order to assess the validity and accuracy of the closure in different regimes. For Couette flow and heat transfer between flat plates, it is shown that the closure predictions are consistent with the expected analytical solutions in all regimes. In the cases of flow past a circular cylinder and lid-driven cavity flow, the closure is found to give more accurate results than the related lower-order maximum-entropy Gaussian and maximum-entropy-based regularized Gaussian closures. The ability to predict important non-equilibrium phenomena, such as a counter-gradient heat flux, is also established.

1.
C. P. T.
Groth
and
J. G.
McDonald
,
Continuum Mech. Thermodyn.
21
,
467
493
(
2009
).
2.
T. I.
Gombosi
,
Gaskinetic Theory
(
Cambridge University Press
,
Cambridge
,
1994
).
3.
H.
Struchtrup
,
Macroscopic Transport Equations for Rarefied Gas Flows
(
Springer-Verlag
,
Berlin
,
2005
).
4.
M.
Torrilhon
,
Ann. Rev. Fluid Mech.
48
,
429
458
(
2016
).
5.
L.
Mieussens
,
Math. Mod. Meth. Appl. S.
10
,
1121
1149
(
2000
).
6.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
7.
W.
Dreyer
,
J. Phys. A: Math. Gen.
20
,
6505
6517
(
1987
).
8.
C. D.
Levermore
,
J. Stat. Phys.
83
,
1021
1065
(
1996
).
9.
I.
Müller
and
T.
Ruggeri
,
Rational Extended Thermodynamics
(
Springer-Verlag
,
New York
,
1998
).
10.
J. G.
McDonald
,
J. S.
Sachdev
, and
C. P. T.
Groth
,
AIAA J.
52
,
1839
1857
(
2014
).
11.
J. G.
McDonald
and
M.
Torrilhon
,
J. Comput. Phys.
251
,
500
523
(
2013
).
12.
L. H.
Holway
, Jr.
,
Phys. Fluids
9
,
1658
1673
(
1966
).
13.
14.
J. G.
McDonald
and
C. P. T.
Groth
, “Numerical modeling of micron-scale flows using the Gaussian moment closure,” Paper 2005-5035 (
AIAA
,
2005
).
15.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
(
PWS Publishing Company
,
Boston
,
1996
).
16.
H.
Struchtrup
and
T.
Thatcher
,
Continuum Mech. Thermodyn.
19
,
177
189
(
2007
).
17.
C. P. T.
Groth
,
P. L.
Roe
,
T. I.
Gombosi
, and
S. L.
Brown
, “
On the nonstationary wave structure of a 35-moment closure for rarefied gas dynamics
,” Paper 95-2312 (
AIAA
,
1995
).
18.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
R. E. Krieger Publishing
,
Huntington, NY
,
1975
).
19.
E. H.
Kennard
,
Kinetic Theory of Gases
(
McGraw-Hill
,
New York
,
1938
).
20.
J. G.
McDonald
and
C. P. T.
Groth
, “Extended fluid-dynamic model for micron-scale flows based on Gaussian moment closure,” Paper 2008-0691 (
AIAA
,
2008
).
21.
H.
Coudeville
,
P.
Trepaud
, and
E. A.
Brun
, “Drag measurements in slip and transition flow,” in
Rarefied Gas Dynamics
, Vol.
I
, edited by
J. H.
de Leeuw
(
Academic Press
,
New York
,
1965
), pp.
444
466
.
22.
M.
Torrilhon
,
Phys. Fluids
22
,
1
16
(
2010
).
23.
B.
John
,
X. J.
Gu
, and
D. R.
Emerson
,
Numer. Heat Trans. B
52
,
287
303
(
2010
).
24.
A.
Rana
,
M.
Torrilhon
, and
H.
Struchtrup
,
J. Comput. Phys.
236
,
169
186
(
2013
).
25.
B.
John
,
X. J.
Gu
, and
D. R.
Emerson
,
Computer & Fluids
45
,
197
201
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.