In order to enable the numerical simulation of rarefied plasma flows in thermal and chemical non-equilibrium, electro-magnetic interactions as well as particle collisions have to be considered. A common approach is to use particle-based methods. The Particle-in-Cell (PIC) method simulates charged collisionless gas flows by solving the Vlasov-Maxwell equation system while particle collisions in neutral reactive flows are treated by the Direct Simulation Monte Carlo (DSMC) method. Therefore, PICLas is being developed, a coupled simulation code that enables three-dimensional particle-based simulations combining high-order PIC and DSMC schemes for the simulation of reactive, rarefied plasma flows. PICLas enables time-accurate simulations on unstructured hexahedral meshes and is parallelized for high-performance computing. In addition to an overview of PICLas, the current development status of the DSMC module is presented. This includes the relaxation of polyatomic gases, the extension of the chemical modeling to gas-surface interactions, and the implementation of steady-state detection routines.

1.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma physics via computer simulation
(
CRC Press
,
2004
).
2.
G.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
New York
,
1994
).
3.
C.-D.
Munz
,
M.
Auweter-Kurtz
,
S.
Fasoulas
,
A.
Mirza
,
P.
Ortwein
,
M.
Pfeiffer
, and
T.
Stindl
,
Comptes Rendus Mécanique
342
,
662
670
(
2014
).
4.
J. C.
Maxwell
,
Philosophical Transactions of the Royal Society of London
170
,
231
256jan
(
1879
).
5.
M.
Pfeiffer
,
A.
Mirza
, and
S.
Fasoulas
,
Journal of Computational Physics
246
,
28
36
(
2013
).
6.
D.
Baganoff
and
J.
McDonald
,
Physics of Fluids A: Fluid Dynamics
2
,
1248
1259
(
1990
).
7.
G.
Bird
,
Progress in Astronautics and Aeronautics
74
,
239
255
(
1981
).
8.
C.
Borgnakke
and
P. S.
Larsen
,
Journal of computational Physics
18
,
405
420
(
1975
).
9.
G.
Bird
,
Physics of Fluids
23
, p.
106101
(
2011
).
10.
C.
Hinshelwood
,
The kinetics of chemical change
,
clarendon
,
1940
.
11.
B. L.
Haas
,
D. B.
Hash
,
G. A.
Bird
,
F. E. Lumpkin
III
, and
H.
Hassan
,
Physics of Fluids
6
,
2191
2201
(
1994
).
12.
M.
Pfeiffer
,
P.
Nizenkov
,
A.
Mirza
, and
S.
Fasoulas
,
Physics of Fluids
28
, p.
027103
(
2016
).
13.
C.
Cercignani
,
The Boltzmann equation
(
Springer
,
1988
).
14.
G. A.
Somorjai
, Wiley,
New York
(
1994
).
15.
K. K.
Kolasinski
and
K. W.
Kolasinski
,
Surface science: foundations of catalysis and nanoscience
(
John Wiley & Sons
,
2012
).
16.
G. R.
Pesch
,
N.
Riefler
,
U.
Fritsching
,
L. Colombi
Ciacchi
, and
L.
Mädler
,
AIChE Journal
61
,
2092
2103
(
2015
).
17.
P.
Kisliuk
,
Journal of Physics and Chemistry of Solids
3
,
95
101
(
1957
).
18.
A.
De Jong
and
J.
Niemantsverdriet
,
Surface Science
233
,
355
365
(
1990
).
19.
J. M.
Burt
and
I. D.
Boyd
, “
A global convergence criterion for steady state dsmc simulations
,” in
AIP Conference Proceedings-American Institute of Physics
, Vol.
1333
(
2011
) p.
230
.
20.
J.
Von Neumann
,
The Annals of Mathematical Statistics
12
,
367
395
(
1941
).
21.
J. D.
Kelly
and
J. D.
Hedengren
,
Journal of Process Control
23
,
326
331
(
2013
).
22.
Y.-H.
Lee
,
K.-H.
Kyung
, and
C.-S.
Jung
,
Computers & industrial engineering
33
,
805
808
(
1997
).
23.
G. A.
Le Roux
,
B. F.
Santoro
,
F. F.
Sotelo
,
M.
Teissier
, and
X.
Joulia
,
Computer Aided Chemical Engineering
25
,
459
464
(
2008
).
24.
H. B.
Mann
,
Econometrica: Journal of the Econometric Society
245
259
(
1945
).
This content is only available via PDF.
You do not currently have access to this content.