The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10−50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

1.
B.
Liu
and
J.
Goree
,
Physical Review E
89
,
043107
(
2014
).
2.
T.
Ma
,
L.
Fletcher
,
A.
Pak
,
D. A.
Chapman
,
R. W.
Falcone
,
C.
Fortmann
,
E.
Galtier
,
D. O.
Gericke
,
G.
Gregori
,
J.
Hastings
,
O. L.
Landen
,
S.
Le Pape
,
H. J.
Lee
,
B.
Nagler
,
P.
Neumayer
,
D.
Turnbull
,
J.
Vorberger
,
T. G.
White
,
K.
Wünsch
,
U.
Zastrau
,
S. H.
Glenzer
, and
T.
Döppner
,
Phys. Plasmas
21
,
056302
(
2014
).
3.
A.
Bataller
,
B.
Kappus
,
C.
Camara
and
S.
Putterman
,
Phys. Rev. Lett.
113
,
024301
(
2014
).
4.
G.
Chabrier
,
D.
Saumon
, and
A. Y.
Potekhin
,
J. Phys. A: Math. Gen.
39
,
4411
(
2006
).
5.
G.
Bannasch
,
J.
Castro
,
P.
McQuillen
,
T.
Pohl
, and
T. C.
Killian
,
Phys. Rev. Lett.
109
,
185008
(
2012
).
6.
S. D.
Baalrud
and
J.
Daligault
,
Physical Review Letters
110
,
235001
(
2013
).
7.
S. D.
Baalrud
and
J.
Daligault
,
Physics of Plasmas
21
,
055707
(
2014
).
8.
S. D.
Baalrud
and
J.
Daligault
,
Phys. Rev. E
91
,
063107
(
2015
).
9.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
, (
Addison-Wesley
,
Reading
,
1960
) p.
313
.
10.
J.
Daligault
,
K. Ø.
Rasmussen
, and
S. D.
Baalrud
,
Physical Review E
90
,
033105
(
2014
).
11.
T.
Haxhimali
,
R. E.
Rudd
,
W. H.
Cabot
, and
F. R.
Graziani
,
Phys. Rev. E
90
,
023104
(
2014
).
12.
M. V.
Beznogov
, and
D. G.
Yakovlev
,
Phys. Rev. E
90
,
033102
(
2014
).
13.
T. S.
Strickler
,
T. K.
Langin
,
P.
McQuillen
,
J.
Daligault
, and
T. C.
Killian
,
Phys. Rev. X
6
,
021021
(
2016
).
14.
J.
Daligault
,
S. D.
Baalrud
,
C. E.
Starrett
,
D.
Saumon
, and
T.
Sjostrom
,
Physical Review Letters
116
,
075002
(
2016
).
15.
C. E.
Starrett
and
D.
Saumon
,
Phys. Rev. E
87
,
013104
(
2013
).
16.
C. E.
Starrett
,
D.
Saumon
,
J.
Daligault
, and
S.
Hamel
,
Phys. Rev. E
90
,
033110
(
2014
).
17.
L.
Landau
,
Physik. Z. Sowjetunion
10
,
154
(
1936
).
18.
M. N.
Roesnbluth
,
W. M.
MacDonald
and
D. L.
Judd
,
Phys. Rev.
107
,
1
(
1957
).
19.
T.
Yokota
,
Y.
Nakao
,
T.
Johzaki
and
K.
Mima
,
Phys. Plasmas
13
,
022702
(
2006
).
20.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical theory of transport processes in gases
, (
Elsevier
,
New York
,
1972
).
21.
G. H.
Lane
and
E.
Everhart
,
Physical Review
117
,
920
(
1960
).
22.
H.-S.
Hahn
,
E. A.
Mason
, and
F. J.
Smith
,
Physics of Fluids
14
,
278
(
1971
).
23.
S. D.
Baalrud
,
Physics of Plasmas
19
,
030701
(
2012
).
24.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids, 3rd Edition
(
Academic Press
,
Oxford
,
2006
).
25.
S.
Chapman
and
T.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, (
Cambridge University
,
Cambridge
,
1970
).
26.
H.
Grad
, “Principles of the kinetic theory of gases,” in
Handbuch der Physik
Vol.
XII
, pp.
205
294
ed.
S.
Flugge
.
Springer
,
Berlin
(
1958
).
27.
J.
Daligault
,
Phys. Rev. Lett.
96
,
065003
(
2006
).
28.
Z.
Donkó
,
G. J.
Kalman
and
K. I.
Golden
,
Phys. Rev. Lett.
88
,
225001
(
2002
).
29.
E. M.
Lifshitz
and
L. P.
Pitaevskii
,
Physical Kinetics
, (
Elsevier
,
Amsterdam
,
1981
)
30.
T.
Ott
and
M.
Bonitz
,
Phys. Rev. Lett.
107
,
135003
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.