This paper reviews the accuracy of the Simplified Bernoulli Trial (SBT) algorithm and its variants, i.e., SBT-TAS (SBT on transient adaptive subcells) and ISBT (intelligence SBT) in the simulation of a wide spectrum of rarefied flow problems, including collision frequency ratio evaluation in the equilibrium condition, comparison of the Sonine-polynomial coefficients prediction in the Fourier flow with the theoretical prediction of the Chapman-Enskog expansion, accurate wall heat flux solution for the Fourier flow in the early slip regime, and hypersonic flows over cylinder and biconic geometries. We summarize advantages and requirements that utilization of the SBT collision families brings to a typical DSMC solver.

1.
V.
Yanitskiy
, “
Operator approach to Direct Simulation Monte Carlo theory in rarefied gas dynamics
,”
Proceedings of the 17ᵗʰ International Symposium on Rarefied Gas Dynamics
, edited by
A.
Beylich
(
VCH
,
Weinheim
1990
), pp.
770
777
.
2.
G. A.
Bird
, “
The Perception of Numerical Methods in Rarefied Gas Dynamics
”,
Proceedings of the 16ᵗʰ International Symposiums on Rarefied Gas Dynamics
, edited by
E. P.
Muntz
,
D.
Weaver
and
D.
Campbell
(
AIAA
,
Washington, DC
,
1989
), pp.
211
226
.
3.
G. A.
Bird
, “
Shock Wave Structure in a Rigid Sphere Gas
”,
Proceedings of the 4ᵗʰ International Symposiums on Rarefied Gas Dynamics
, edited by
J. H.
de Leeuw
(
Academic Press
,
New York
,
1965
) pp.
216
222
.
4.
K.
Koura
,
Physics of Fluids
29
(
11
),
3509
3511
(
1986
).
5.
M. S.
Ivanov
,
S. V.
Rogasinskii
, “
Theoretical analysis of traditional and modern schemes of the DSMC method
”,
Proceedings of the 17ᵗʰ International Symposiums on Rarefied Gas Dynamics
, edited by
A.
Beylich
(
VCH
,
Weinheim
,
1990
)
629
642
.
6.
G. J.
LeBeau
,
K. A.
Boyles
,
F. E.
Lumpkin
, “
Virtual sub-cells for the direct simulation Monte Carlo method
”,
Proceeding of the 41ˢᵗ Aerospace Sciences Meeting and Exhibit
(
Reno, Nevada
,
2003
), AIAA 2003-1031.
7.
G. A.
Bird
, “Visual DSMC Program for Two-Dimensional and Axially Symmetric Flows,
The DS2V Program User’s Guide, Ver. 2.1
,
G.A.B. Consulting Pty Ltd
,
Sydney, Australia
(
2003
).
8.
G. A.
Bird
, “
The DS2V/3V program suite for DSMC calculations
”,
Proceedings of the 24ᵗʰ International Symposium
, in
Rarefied Gas Dynamics
762
(
American Institute of Physics
,
Melville, NY
,
2005
) pp.
541
546
.
9.
O. M.
Belotserkovskii
,
V. E.
Yanitskiy
,
USSR Computational Mathematics and Mathematical Physics
15
,
101
114
(
1975
).
10.
S.
Stefanov
,
SIAM Journal on Scientific Computing
33
,
677
702
(
2011
).
11.
A.
Amiri
,
E.
Roohi
,
H.
Nami
,
H.
Niazmand
and
S.
Stefanov
,
Computers & Fluids
102
,
266
276
(
2014
).
12.
B.
Goshayeshi
,
E.
Roohi
and
S.
Stefanov
,
Journal of Computational Physics
303
,
28
44
(
2015
).
13.
B.
Goshayeshi
,
E.
Roohi
and
S.
Stefanov
,
Physics of Fluid
27
(
10
),
107104
(
2015
).
14.
M. A.
Gallis
,
J. R.
Torczynski
and
D.J.
Rader
and
G.A.
Bird
,
Journal of Computational Physics
228
(
12
),
4532
4548
(
2009
).
15.
A.
Amiri
,
E.
Roohi
,
H.
Niazmand
and
S.
Stefanov
,
Journal of Heat Transfer
135
,
101008
(
2013
).
16.
A.
Shoja-Sani
,
E.
Roohi
,
M.
Kahrom
and
S.
Stefanov
,
European journal of mechanics. B, Fluids
48
,
59
74
(
2014
).
17.
A.
Saadati
and
E.
Roohi
,
Aerospace Science and Technology
46
,
236
255
(
2015
).
18.
G. A.
Bird
, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, (
Clarendon Press
,
Oxford
,
1994
).
19.
M. A.
Gallis
,
J. R.
Torczynski
and
D.J.
Rader
,
Phys. Rev. E
69
,
042201
(
2004
).
20.
D. J.
Rader
,
M. A.
Gallis
,
J. R.
Torczynski
and
W.
Wagner
,
Physics of Fluids
18
(
7
),
077102
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.