The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and “tick-shaped” model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

1.
J. P.
Davis
and
B.
Sturtevant
,
Physics of Fluids
12
,
2661
2686
(
2000
).
2.
J. C.
Robinet
,
J. Fluid Mech.
579
,
85
112
(
2007
).
3.
C.
Ballaro
and
J.
Anderson
 Jr
, “
Shock strength effects on separated flows in non-equilibrium chemically reacting air shock wave/boundary layer interaction
,”
AIAA paper 91-0250
(
1991
).
4.
A.
Grumet
,
J.
Anderson
, and
M.
Lewis
, “
A numerical study of the shock wave/ boundary layer interaction for nonequilibrium chemically reacting air: the effects of catalytic walls
,”
AIAA paper
91
0245
(
1991
).
5.
J. N.
Moss
, “
Dsmc computations for regions of shock/shock and shock/boundary layer interaction
,”
AIAA paper 2001-1027
(
2001
).
6.
G. N.
Markelov
,
M. S.
Ivanov
,
S. F.
Gimelshein
, and
D. A.
Levin
,
Rarefied Gas Dynamics 23rd International Symposium
431
440
(
2003
).
7.
M. S.
Holden
and
T. P.
Wadhams
, “
Code validation study of laminar shock/boundary layer and shock/shock interactions in hypersonic flow. part a: Experimental measurements
,”
AIAA paper 2001-1031
(
2001
).
8.
J. N.
Moss
and
G. A.
Bird
,
AIAA Journal
43
,
2565
2573
(
2005
).
9.
J.
Moss
,
S.
O’Byrne
,
N.
Deepak
, and
S.
Gai
, “
Simulations of hypersonic, high-enthalpy separated flow over a’tick’configuration
,” in
28th International Symposium on Rarefied Gas Dynamics 2012
, Vol.
1501
(
AIP Publishing
,
2012
), pp.
1453
1460
.
10.
A.
Swantek
and
J.
Austin
,
AIAA Journal
53
,
311
320
(
2014
).
11.
D. R.
Chapman
,
D. M.
Kuehn
, and
H. K.
Larson
, “
Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition
,”
NACA-TR-1356
(
1958
).
12.
J.
Moss
,
S.
O’Byrne
, and
S.
Gai
, “
Hypersonic separated flows about” tick” configurations with sensitivity to model design
,” in
29th International Symposium on Rarefied Gas Dynamics 2014
(
AIP Publishing
,
2014
).
13.
M. S.
Ivanov
,
G. N.
Markelov
, and
S. G.
Gimelshein
, “
Statistical simulation of reactive rarefied flows - numerical approach and applications
,”
AIAA paper
1998
2669
(
1998
).
14.
M. S.
Ivanov
and
S. V.
Rogasinsky
,
Soviet Journal of Numerical Analysis and Mathematical Modeling
3
,
453
465
(
1988
).
15.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
Oxford, England, U.K.
,
1994
).
16.
A.
Khraibut
,
S.
Gai
, and
A.
Neely
, “
A numerical study of hypersonic laminar leading edge separation with emphasis on wall temperature and real gas effects
,” in
51st International Conference on Applied Aerodynamics
(
2016
).
17.
M.
MacLean
,
A.
Dufrene
, and
M.
Holden
, “
Spherical capsule heating in high enthalpy carbon dioxide in LENS-XX expansion tunnel
,”
AIAA paper
2013
0906
(
2013
).
18.
G. H.
Furumoto
,
X.
Zhong
, and
J. C.
Skiba
,
Physics of Fluids
9
,
191
210
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.