The application of in vitro systems can lead to new methods of crop amelioration. This method has been widely utilized for breeding tenacities, particularly for stress tolerance selection. Salinity causes oxidative stress in callus by enhancing the production of Reactive Oxygen Species (ROS), resulting in an efficient antioxidant system. The exogenous application of ascorbic acid (AsA) is an important requirement for tolerance. The present study aimed to examine in vitro selection strategy for callus induction in rice mature embryo culture on MS culture medium and to produce salt-tolerant callus under sodium chloride (NaCl) and AsA conditions in callus rice variety, MR269. This study also highlights changes in the activities of proline and antioxidants peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) of callus under NaCl stress to understand their possible role in salt tolerance. However, various levels of exogenously applied AsA under saline conditions improved callus, and the antioxidant enzyme activities of AsA are related to resistance to oxidative stress. Our results provide strong support for the hypothesis that AsA-dependent antioxidant enzymes play a significant role in the salinity tolerance of callus rice.

1.
A. N.
Alhasnawi
,
A. A.
Kadhimi
,
A. R.
Ibrahim
,
A.
Isahak
,
A.
Mohamad
,
F.
Doni
,
W.-W.
Yusoff
, and
C.
Zain
,
J. Plant Biol. Res.
3
(
2
),
51
64
(
2014
).
2.
R.
Munns
and
M.
Tester
,
Ann Rev Plant Biol
59
,
651
681
(
2008
).
3.
S. E.
Sharry
and
J. A. T.
da Silva
in
Floriculture, Ornamental and Plant Biotechnology
, Volume
II
edited by
J. A. T.
da Silva
(
2006
)
317
324
.
4.
N.
Tuteja
,
S. S.
Gill
,
A. F.
Tiburcio
, and
R.
Tuteja
,
Improving Crop Resistance to Abiotic Stress
, (
Wiley-VCH Verlag Gmb H and Co. KGaA
,
2012
), p.
32840
.
5.
J. A.
Hernandez
,
M. A.
Ferrer
,
A.
Jimenez
,
A. R.
Barcelo
, and
F.
Sevilla
,
Plant Physiol.
127
,
817
831
(
2001
).
6.
K.
Apel
and
H.
Hirt
,
Annu. Rev. Plant. Biol.
55
,
373
399
(
2004
).
7.
G. M.
Abogadallah
and
W. P.
Quick
,
Acta. Physiol. Plant
31
,
815
824
(
2009
).
8.
A.
Dolatabadian
and
R. S.
Jouneghani
,
Not. Bot. Hort. Agrobot. Cluj.
37
(
2
),
165
172
(
2009
).
9.
9.
H.-B.
Shao
,
L.-Y.
Chu
,
Z.-H.
Lu
, and
C.-M.
Kang
,
Int. J. Bio. Sci.
4
(
1
),
8
14
(
2008
).
10.
T. A.
Khan
,
M.
Mazid
, and
F.
Mohammad
,
J. Agrobiol.
28
(
2
),
97
111
(
2012
).
11.
V.
Pavet
,
E.
Olmos
,
G.
Kiddle
,
S.
Mowla
,
S.
Kumar
,
J.
Antoniw
,
E.
Alvarez
, and
C.H.
Foyer
,
Plant Physiol.
139
,
1291
1303
(
2005
).
12.
T.
Murashige
and
F.
Skoog
,
Physiol. Plant.
15
(
3
),
473
497
(
1962
).
13.
R. I.
Damanik
,
M. R.
Ismail
,
Z.
Shamsuddin
,
S.
Othman
,
A. M.
Zain
, and
M.
Maziah
,
Plant Growth Regul.
67
(
1
),
83
92
(
2012
).
14.
P. K.
Gupta
and
D.
Holmstrom
, in Protocol for Somatic Embryogenesis in Woody Plants, edited by
S.M.
Jain
and
P.K.
Gupta
(
Springer.
Printed in
the Netherlands
,
2005
), pp.
573
575
.
15.
L. S.
Bates
,
R. P.
Waldren
, and
I.D.
Teare
,
Plant and Soil
39
,
205
207
(
1973
).
16.
D.
Racusen
and
M.
Foote
,
Can. J. Bot.
43
(
7
),
817
824
(
1965
).
17.
R. F.
Beers
and
I. W.
Sizer
,
J. Biol. Chem.
195
,
133
140
(
1952
).
18.
J.
Maral
,
K.
Puget
, and
A.
Michelson
,
Biochem. Biophys. Res. Commun.
77
(
4
),
1525
1535
(
1977
).
19.
M.
Ashraf
,
Flora
199
(
5
),
361
376
(
2004
).
20.
P.
Ahmad
and
M.N.V.
Prasad
,
Environmental Adaptations and Stress Tolerance in Plants in the Era of Climate Change
(
Springer New York Dordrecht Heidelberg Londo
,
2012
).
21.
P.
Shanthi
,
S.
Jebaraj
, and
S.
Geetha
,
Electron J Plant Breed
1
(
4
),
1208
1212
(
2010
).
22.
N.
Munir
,
S.
Naz
,
F.
Aslam
,
K.
Shahzadi
, and
S.
Javad
,
J. Agric. Res.
51
(
23
),
267
276
(
2013
).
23.
A. N.
Alhasnawi
,
A. A.
Kadhimi
,
A.
Isahak
,
A.
Mohamad
,
W.M.W.
Yusoff
, and
C.
Zain
,
Asian J. Crop Sci.
7
(
3
),
186
196
, (
2015
).
24.
V. R.
Franceschi
and
N. M.
Tarlyn
,
Plant Physiol.
130
,
649
656
(
2002
).
25.
W. H.
Ko
,
C. C.
Su
,
C. L.
Chen
, and
C. P.
Chao
,
Plant Cell Tiss. Org.
96
,
137
141
(
2009
).
26.
P. E.
Verslues
and
S.
Sharma
,
Arabidopsis Book
e0140
(
2010
).
27.
P. J.
Reddy
and
K.
Vaidyanath
,
Theor. Appl. Genet.
71
,
757
760
(
1986
).
28.
J.
Summart
,
P.
Thanonkeo
,
S.
Panichajakul
,
P.
Prathepha
, and
M.T.
McManus
,
African J. Biotech.
9
(
2
),
145
152
(
2010
).
29.
X.
Liang
,
L.
Zhang
,
S.K.
Natarajan
, and
D. F.
Becker
.
Antiox. Redox Signal.
19
(
9
),
998
1011
(
2013
).
30.
B.
Ejaz
,
Z. A.
Sajid
, and
F.
Aftab
,
Turk. J. Biol.
36
,
630
640
(
2012
).
31.
J.
Csiszár
,
M.
Szabó
,
L.
Erdei
,
L.
Márton
,
F.
Horváth
, and
I.
Tari
,
J. Plant Physiol.
161
,
691
699
(
2004
).
32.
T.S.
Swapna
,
Ind. J. Biotech.
2
,
251
258
(
2003
).
33.
V.
Mittova
,
M.
Tal
,
M.
Volokita
, and
M.
Guy
,
Physiol. Plant.
115
(
3
),
393
400
(
2002
).
34.
K.
Subhashini
and
G. M.
Reddy
,
Indian J. Exp. Biol.
28
,
277
279
(
1990
).
35.
H.E.S.A.
El Sayed
and
H.S.
Al Othaimen
,
J. Adv. Agric.
4
(
1
),
331
349
(
2015
).
36.
A.
Dolatabadian
,
S.
Sanavy
, and
N.
Chashmi
,
J. Agro. Crop Sci.
194
(
3
),
206
213
(
2008
).
37.
A.N.
Alhasnawi
,
C. M. Z. Che
Radziah
,
A. A.
Kadhimi
,
A.
Isahak
,
A.
Mohamad
,
W.-W.
Yusoff
,
Biol. Plantarum
doi: (
2016
).
This content is only available via PDF.
You do not currently have access to this content.