Investigation of hydrogen accumulation and distribution in zirconium alloy Zr1Nb after electrochemical and gas-phase hydrogenation was carried out. The hydride rim with sufficient thickness could not be obtained by electrolytic saturation. The hydrogen sorption rates of zirconium alloy at different temperatures were calculated: 1.65 × 10−4 wt %/min at 350°C, 2.4 × 10−2 wt %/min at 450°C, 7.3 × 10−2 wt %/min at 550°C. The decrease of cooling rate from 10 to 2°C/min after gas-phase hydrogenation lead to increased thickness of the hydride layer from 50 to 59 µm.

1.
N. S.
Pushilina
, et al.,
J. Alloys Compounds
645
,
S476
S479
(
2015
).
2.
I. P.
Chernov
, et al.,
Tech. Phys.
59
(
4
),
535
539
(
2014
).
3.
N. S.
Pushilina
, et al.,
J. Nucl. Mater.
456
,
311
315
(
2015
).
4.
F.
Nagase
,
J. Nucl. Mater.
415
,
117
122
(
2011
).
5.
A.
Sawatzky
,
J. Nucl. Mater.
2
(
4
),
321
328
(
1960
).
6.
S.P.
Shavkunov
and
A.B.
Tolkachev
,
Study of Electrochemical Hydrogen Evolution at a Single-Crystal Zirconium Face in Sulfuric Acid Solutions
(
2002
).
7.
B.
Hanson
,
R.
Shimskey
,
C.
Lavender
,
P.
MacFarlan
, and
P.
Eslinger
,
Hydride Rim Formation in Unirradiated Zircaloy
(
Pacific Northwest National Laboratory
, April 30,
2013
).
8.
R.
Shimskey
,
B.
Hanson
, and
P.
MacFarlan
,
Optimization of Hydride Rim Formation in Unirradiated Zr-4 Cladding
(
Pacific Northwest National Laboratory
, September 30,
2013
).
9.
T.
Kido
and
N.
Sugano
,
Trans. At. Energy Soc. Jpn.
1
,
469
471
(
2002
).
10.
F.
Nagase
and
T.
Fuketa
,
J. Nucl. Sci. Technol.
42
(
1
),
58
65
(
2005
).
11.
R. S.
Daum
,
Y. S.
Chu
, and
A. T.
Motta
,
J. Nucl. Mater.
392
(
3
),
453
463
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.