Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their “mission” is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in physiological media and high permeability falling in the range of trabecular bone. The proposed low-temperature processing approach allows for incorporation of drugs into the residual nanopores without damaging the biomolecule activity.

1.
A. R.
Amini
,
J. S.
Wallace
, and
S. P.
Nukavarapu
,
J. Long Eff. Med. Implants
21
(
2
),
93
122
(
2011
).
2.
G.
Kontakis
,
G.
Pagkalos
,
T.
Tosounidis
,
J.
Melissas
, and
P.
Katonis
,
Acta Orthop. Belg.
73
,
159
169
(
2007
).
3.
J. A.
Ormiston
and
P. W. S.
Serruys
,
Circ. Cardiovasc. Interv.
2
,
255
260
(
2009
).
4.
Y. F.
Zheng
,
X. N.
Gu
, and
F.
Witte
,
Mater. Sci. Eng. R
77
,
1
34
(
2014
).
5.
A.
Gloria
,
R.
De Santis
, and
L.
Ambrosio
,
J. Appl. Biomater. Biomech.
8
(
2
),
57
67
(
2010
)
6.
H.-J.
Sung
,
C.
Meredith
,
C.
Johnson
, and
Z. S.
Galis
,
Biomaterials
25
(
26
),
5735
5742
(
2004
).
7.
C.
Liu
,
Z.
Xia
, and
J. T.
Czernuszka
,
Chem. Eng. Res. Des.
85
(
7
),
1051
1064
(
2007
).
8.
T. W.
Bauer
and
G. F.
Muschler
,
Clin. Orthop. Rel. Res.
371
,
10
27
(
2000
).
9.
P.
Ducheyne
and
Q.
Qiu
,
Biomaterials
20
,
2287
2303
(
1999
).
10.
J. H.
Shepherd
and
S. M.
Best
,
JOM
63
(
4
),
83
92
(
2011
).
11.
W. G.
De Long
,
T. A.
Einhorn
,
K.
Koval
, et al.,
J. Bone Joint Surg.
89
(
3
),
649
658
(
2007
).
12.
J. A.
Juhasz
and
S. M.
Best
,
J. Mater. Sci.
47
,
610
624
(
2012
).
13.
W. R.
Revie
and
H. H.
Uhlig
,
Corrosion and Corrosion Control
(
John Wiley
,
New York
,
2008
).
14.
M.
Rai
,
A.
Yadav
, and
A.
Gade
,
Biotechnol. Adv.
27
,
76
83
(
2009
).
15.
K. K. Y.
Wong
and
X.
Liu
,
Med. Chem. Commun.
1
,
125
131
(
2010
).
16.
L. S.
Nair
and
C. T.
Laurencin
,
J. Bone Joint Surg. Am.
90
,
128
131
(
2008
).
17.
S.
Chernousova
and
M.
Epple
,
Angew. Chem. Int. Ed.
52
,
1636
1653
(
2013
).
18.
C.
Sengstock
,
J.
Diendorf
,
M.
Epple
,
T. A.
Schildhauer
, and
M.
Köller
,
Beilstein J. Nanotechnol.
5
,
2058
2069
(
2014
).
19.
K.
Loza
,
J.
Diendorf
,
C.
Sengstock
, et al.,
J. Mater. Chem. B
2
,
1634
1643
(
2014
).
20.
L.
Juan
,
Z.
Zhimin
,
M.
Anchun
,
L.
Lei
, and
Z.
Jingchao
,
Int. J. Nanomedicine
5
,
261
267
(
2010
).
21.
R.
Nirmala
,
F. A.
Sheikh
,
M. A.
Kanjwal
,
J. H.
Lee
, et al.,
J. Nanopart. Res.
13
(
5
),
1917
1927
(
2011
).
22.
X.
Bai
,
K.
More
,
Ch. M.
Rouleau
, and
A.
Rabiei
,
Acta Biomater.
6
,
2264
2273
(
2010
).
23.
L.
Moroni
,
A.
Nandakumar
,
F. Barrère
de Groot
, et al.,
J. Tissue Eng. Regen. Med.
9
,
745
759
(
2015
).
24.
A.
Sharma
,
F.
Meyer
,
M.
Hyvonen
,
S. M.
Best
,
R. E.
Cameron
, and
N.
Rushton
,
Bone Joint Res.
1
,
145
151
(
2012
).
25.
L.
Francis
,
D.
Meng
,
J.
Knowles
,
T.
Keshavarz
,
A. R.
Boccaccini
, and
I.
Roy
,
Int. J. Mol. Sci.
12
,
4294
4314
(
2011
).
26.
J.
Mouriño
,
P.
Cattalini
,
J. A.
Roether
,
P.
Dubey
,
I.
Roy
, and
A. R
Boccaccini
,
Expert. Opinion Drug. Delivery
10
,
1353
1365
(
2013
).
27.
Q.
Yao
,
P.
Nooeaid
,
J. A.
Roether
,
Y.
Dong
,
Q.
Zhang
, and
A. R.
Boccaccini
,
Ceramics Int.
39
,
7517
7522
(
2013
).
28.
A.
Rakovsky
,
I.
Gotman
,
E.
Rabkin
, and
E. Y.
Gutmanas
,
J. Mech. Behav. Biomed. Mater.
18
,
37
46
(
2013
).
29.
S. K.
Swain
,
I.
Gotman
, and
E. Y.
Gutmanas
,
Adv. Biomater. Dev. Med.
2
,
55
62
(
2015
).
30.
A.
Rakovsky
,
I.
Gotman
,
E.
Rabkin
, and
E. Y.
Gutmanas
,
J. Mech. Behav. Biomed. Mater.
32
,
89
98
(
2014
).
31.
S.
Li
,
J. R.
De Wijn
,
J.
Li
,
P.
Layrolle
, and
K.
De Groot
,
Tissue Eng.
9
(
3
),
535
548
(
2003
).
32.
M.
Bernstein
,
I.
Gotman
,
C.
Makarov
,
A.
Phadke
,
S.
Radin
,
P.
Ducheyne
, and
E. Y.
Gutmanas
,
Adv. Biomater. B
12
(
8
),
341
347
(
2010
).
33.
C.
Makarov
,
I.
Gotman
,
X.
Jiang
,
S.
Fuchs
,
C. J.
Kirkpatrick
, and
E. Y.
Gutmanas
,
J. Mater. Sci. Mater. Med.
21
,
1771
1779
(
2010
).
34.
A.
Rakovsky
,
I.
Gotman
,
E.
Rabkin
, and
E. Y.
Gutmanas
,
J. Mech. Behav. Biomed. Mater.
18
,
37
46
(
2013
).
35.
E. Y.
Gutmanas
, in
ASM Handbook, vol. 7, “Powder Metal Technologies and Applications”
(
ASM Int. Materials Park
,
OH
,
1998
), pp.
574
582
.
36.
E. Y.
Gutmanas
,
Powder Metal Int.
15
,
129
132
(
1983
).
37.
38.
A. J. Wagoner
Johnson
and
B. A.
Herschler
,
Acta Biomater.
7
(
1
),
16
30
(
2011
).
39.
S. S.
Kohles
,
J. B.
Roberts
,
M. L.
Upton
, et al.,
J. Biomech.
34
(
9
),
1197
1202
(
2001
).
40.
S. G.
Psakhie
,
E. V.
Shilko
,
A. G.
Grigoriev
,
S. V.
Astafurov
,
A. V.
Dimaki
, and
A. Yu.
Smolin
,
Eng. Fract. Mech.
130
,
96
115
(
2014
).
41.
S. K.
Swain
,
I.
Gotman
,
R.
Unger
,
C. J.
Kirkpatrick
,
E.Y.
Gutmanas
,
J. Mech. Behav. Biomed. Mater.
53
,
434
444
(
2016
).
42.
A.
Sharipova
,
S. G.
Psakhie
,
S. K.
Swain
,
I.
Gotman
, and
E. Y.
Gutmanas
,
AIP Conf. Proc.
1683
, UNSP 020244 (
2015
).
43.
C.
Makarov
,
I.
Gotman
,
S.
Radin
,
P.
Ducheyne
, and
E. Y.
Gutmanas
,
J. Mater. Sci.
45
,
6320
6324
(
2010
).
44.
C.
Makarov
,
I.
Berdicevsky
,
A.
Raz-Pasteur
, and
I.
Gotman
,
J. Mater. Sci. Mater. Med.
24
,
679
687
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.