Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.

1.
FAO
,
The state of word fisheries and aquaculture: opportunities and challenges, FAO Fisheries and Aquaculture Department
.
Food and Agriculture Organization of the United Nations
,
Rome
, pp.
243
(
2014
).
2.
C.-J.
Soong
,
R.
Razamin
and
A. R.
Rosshairy
,
Fish consumption and track to a fish feed formulation
,
2ⁿᵈ Innovation and Analytics Conference & Exhibition 2015 (IACE2015)
,
Kedah.
3.
C.-J.
Soong
,
R.
Razamin
and
A. R.
Rosshairy
,
Nutrients requirements and composition in a Grouper fish feed formulation
,
International Soft Science Conference 2016 (ISSC2016)
,
Langkawi, Kedah.
4.
I. B.
Tuburan
,
E. B.
Coniza
,
E. M.
Rodriquez
&
R. F.
Agbayani
,
Culture and economics of wild grouper (Epinephelus coioides) using three feed types in ponds
,
Aquaculture
,
201
,
229
240
(
2001
).
5.
A. O.
Daud
,
Pembenihan dan pembiakan ikan Kerapu Harimau
,
Kuala Lumpur
:
Dewan Bahasa dan Pustaka
. (
2012
).
6.
Q.
Liu
,
T.
Sakamoto
,
S.
Kubota
,
N.
Okamoto
,
H.
Yamashita
,
M.
Takagi
,
Y.
Shigenobu
,
T.
Sugaya
,
Y.
Nakamura
,
M.
Sano
,
S.
Wuthisuthimethavee
&
A.
Ozaki
,
A genetic linkage map of kelp grouper (Epinephelus bruneus) based on microsatellite markers
,
Aquaculture
,
414-415
,
63
81
(
2013
).
7.
W. Y.
Tseng
&
S. K.
Ho
,
Grouper Culture, A Practical Manual
.
Chien Cheng Publisher, Kaohsiung, People’s Republic of
China
, Aquaculture, pp.
134
(
1988
).
8.
NRC
,
Nutrient Requirements of Fish and Shrimp
,
Board on Agriculture and Natural Resources, National Research Council
(
2011
).
9.
D. B.
Fogel
, The advantages of evolutionary computation, in
D.
Lundth
,
B.
Olsson
, &
A.
Naraganan
, (eds.),
Bio-computing and emergent computation
,
World Scientific Press
, pp.
1
11
(
1997
).
10.
H. P.
Schwefel
, Advantages (and disadvantages) of evolutionary computation over other approaches. in
K.
De-Jong
,
L.
Fogel
&
H. P.
Schwefel
, (eds.).
Handbook of Evolutionary Computation
(pp.
1
10
),
IOP Publishing Ltd and Oxford University Press
, (
1997
).
11.
W.
Banzhaf
,
P.
Nordin
,
R. E.
Keller
&
F. D.
Francone
,
Genetic Programming: An introduction on the automatic evolution of computer programs and its applications
,
Dpunkt Verlag and Morgan Kaufmann Publishers, Inc
. (
1998
).
12.
C.
Grosan
&
A.
Abraham
,
Hybrid Evolutionary Algorithm: Methodologies, Architectures, and Reviews
,
Studies in Computational International (SCI)
75
,
1
17
(
2007
).
13.
X. J.
Yu
, &
M.
Gen
,
Introduction to Evolutionary Algorithms
,
Springer
,
Berlin Heidelberg New York
(
2010
).
14.
A. K.
Bhatia
,
Applications of Genetic Algorithms in Agricultural Problems-An overview
.
Journal of the Indian Society of Agricultural Statistics
,
67
(
1
),
13
22
(
2013
).
15.
S.
Hurley
,
L.
Moutinho
, &
N. M.
Stephens
,
Solving marketing optimization problems using genetic algortihms
.
European Journal of Marketing
,
29
(
4
),
39
56
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.