Among many weather phenomena, convective storms are one of the most dangerous since they are able to cause, in a relatively small time window, great damages. Convective precipitations are in fact characterized by relatively small spatial and temporal scales, and as a consequence, the task of forecasting such phenomena turns out to be an elusive one. Nonetheless, given their dangerousness, the identification and tracking of meteorological convective systems are of paramount importance and are the subject of several studies. In particular, the early detection of the areas where deep convection is about to appear, and the prediction of the development and path of existing convective thunderstorms represent two focal research topics. The aim of the present work is to outline a framework employing various techniques apt to the task of monitoring and characterization of convective clouds. We analyze meteorological satellite images and data in order to evaluate the potential occurring of strong precipitation. Techniques considered include numerical, machine learning, image processing. The techniques are tested on data coming from real convective events captured in the last years on the Italian peninsula by the Meteosat meteorological satellites and weather radar.

1.
J. K.
Levy
and
J.
Hall
,
Stochastic Environmental Research and Risk Assessment
19
,
375
377
(
2005
).
2.
F.
Chiaravalloti
and
S.
Gabriele
,
Atmospheric Research
93
,
286
294
(
2009
).
3.
Y.
Hirabayashi
,
R.
Mahendran
,
S.
Koirala
,
L.
Konoshima
,
D.
Yamazaki
,
S.
Watanabe
,
H.
Kim
, and
S.
Kanae
,
Nature Climate Change
3
,
816
821
(
2013
).
4.
R.
Rinehart
and
E.
Garvey
, (
1978
).
5.
M.
Dixon
and
G.
Wiener
,
Journal of Atmospheric and Oceanic Technology
10
,
785
797
(
1993
).
6.
K. M.
Bedka
,
Atmospheric Research
99
,
175
189
(
2011
).
7.
S.
Kolios
and
H.
Feidas
,
Meteorological Applications
20
(
2013
).
8.
T.
Zinner
,
H.
Mannstein
, and
A.
Tafferner
,
Meteorology and Atmospheric Physics
101
,
191
210
(
2008
).
9.
J. R.
Walker
, W. M. M. Jr.,
J. R.
Mecikalski
, and
C. P.
Jewett
,
Journal of Applied Meteorology and Climatology
51
,
1931
1949
(
2012
).
10.
V.
Lakshmanan
,
E.
Gilleland
,
A.
McGovern
, and
M.
Tingley
,
Machine Learning and Data Mining Approaches to Climate Science: Proceedings of the 4th International Workshop on Climate Informatics
(
Springer International Publishing
,
2015
).
11.
D.
Ahijevych
,
J. O.
Pinto
,
J. K.
Williams
, and
M.
Steiner
,
Weather and Forecasting
31
,
581
599
(
2016
).
12.
J. K.
Williams
,
D.
Ahijevych
,
C.
Kessinger
,
T.
Saxen
,
M.
Steiner
, and
S.
Dettling
, “
A machine learning approach to finding weather regimes and skillful predictor combinations for short-term storm forecasting
,” in
AMS 6th Conference on Artificial Intelligence Applications to Environmental Science and 13th Conference on Aviation, Range and Aerospace Meteorology
(
Citeseer
,
2008
).
13.
P. P.
Alberoni
,
L.
Ferraris
,
F. S.
Marzano
,
S.
Nanni
,
R.
Pelosini
, and
F.
Siccardi
, “
The Italian radar network: current status and future developments
,” in
Radar Meteorology (ERAD)
(
2002
), pp.
339
344
.
14.
M.
Montopoli
and
G.
Vulpiani
, “
Preliminary analysis of vertical profiles of polarimetric radar observables in complex orography for operational purpose
,” in
ERAD conference
(
2014
).
15.
L.
Kuncheva
,
Combining pattern classifiers: methods and algorithms
,
2004
.
16.
R. K.
Crane
,
IEEE Transactions on Geoscience Electronics
17
,
250
262
Oct (
1979
).
17.
G.
Delrieu
,
J.
Nicol
,
E.
Yates
,
P.-E.
Kirstetter
,
J.-D.
Creutin
,
S.
Anquetin
,
C.
Obled
,
G.-M.
Saulnier
,
I.
Ducrocq
,
E.
Gaume
,
O.
Payrastre
,
H.
Andrieu
,
P.-A.
Ayral
,
C.
Bouvier
,
L.
Neppel
,
M.
Livet
,
M.
Lang
,
J. P.
du Ch¢telet
,
A.
Walpersdorf
, and
W.
Wobrock
,
Journal of Hydrometeorology
6
,
34
52
(
2005
).
18.
T.
Fiolleau
and
R.
Roca
,
IEEE Transactions on Geoscience and Remote Sensing
51
,
4302
4315
July (
2013
).
19.
K. E.
Kunkel
,
T. R.
Karl
,
H.
Brooks
,
J.
Kossin
,
J. H.
Lawrimore
,
D.
Arndt
,
L.
Bosart
,
D.
Changnon
,
S. L.
Cutter
,
N.
Doesken
,
K.
Emanuel
,
P. Y.
Groisman
,
R. W.
Katz
,
T.
Knutson
,
J.
O’Brien
,
C. J.
Paciorek
,
T. C.
Peterson
,
K.
Redmond
,
D.
Robinson
,
J.
Trapp
,
R.
Vose
,
S.
Weaver
,
M.
Wehner
,
K.
Wolter
, and
D.
Wuebbles
,
Bulletin of the American Meteorological Society
94
,
499
514
(
2013
).
20.
N.
Rebora
,
L.
Molini
,
E.
Casella
,
A.
Comellas
,
E.
Fiori
,
F.
Pignone
,
F.
Siccardi
,
F.
Silvestro
,
S.
Tanelli
, and
A.
Parodi
,
Journal of Hydrometeorology
14
,
906
922
(
2013
).
21.
J. M.
Sieglaff
,
L. M.
Cronce
,
W. F.
Feltz
,
K. M.
Bedka
,
M. J.
Pavolonis
, and
A. K.
Heidinger
,
Journal of Applied Meteorology and Climatology
50
,
110
126
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.