New algorithms for the numerical solution of Ordinary Differential Equations (ODEs) with initial conditions are proposed. They are designed for working on a new kind of a supercomputer – the Infinity Computer – that is able to deal numerically with finite, infinite and infinitesimal numbers. Due to this fact, the Infinity Computer allows one to calculate the exact derivatives of functions using infinitesimal values of the stepsize. As a consequence, the new methods are able to work with the exact values of the derivatives, instead of their approximations. Within this context, variants of one-step multi-point methods closely related to the classical Taylor formulae and to the Obrechkoff methods are considered. To get numerical evidence of the theoretical results, test problems are solved by means of the new methods and the results compared with the performance of classical methods.

1.
Y. D.
Sergeyev
,
M. S.
Mukhametzhanov
,
F.
Mazzia
,
F.
Iavernaro
, and
P.
Amodio
,
International Journal of Unconventional Computing
12
,
3
23
(
2016
).
2.
P.
Amodio
,
F.
Iavernaro
,
F.
Mazzia
,
M. S.
Mukhametzhanov
, and
Y. D.
Sergeyev
,
Mathematics and Computers in Simulation
(
2016
), , in press.
3.
Y. D.
Sergeyev
,
Arithmetic of Infinity
(
Edizioni Orizzonti Meridionali, CS
,
2003
, 2nd ed. 2013).
4.
Y. D.
Sergeyev
,
Informatica
19
(
4
),
567
596
(
2008
).
5.
Y. D.
Sergeyev
,
Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino
68
(
2
),
95
113
(
2010
).
6.
Y. D.
Sergeyev
, in
Dynamics of Information Systems: Algorithmic Approaches
, edited by S. A. and P. P.M. (
Springer
,
New York
,
2013
), pp.
1
66
.
7.
Y. D.
Sergeyev
, Chaos,
Solitons & Fractals
42
(
5
),
3042
3046
(
2009
).
8.
D.
Iudin
,
Y. D.
Sergeyev
, and
M.
Hayakawa
,
Applied Mathematics and Computation
218
(
16
),
8099
8111
(
2012
).
9.
Y. D.
Sergeyev
,
Informatica
22
(
4
),
559
576
(
2011
).
10.
Y. D.
Sergeyev
,
Optimization Letters
5
(
4
),
575
585
(
2011
).
11.
Y. D.
Sergeyev
,
Applied Mathematics and Computation
219
(
22
),
10668
10681
(
2013
).
12.
J.
Lambert
,
Numerical Methods for Ordinary Differential Systems: The Initial Value Problem
(
John Wiley & Sons
,
Chichester
,
1991
).
13.
G. Vanden
Berghe
and
M.
Van Daele
,
Applied Numerical Mathematics
59
,
815
829
(
2009
).
14.
M.
Van Daele
and
G. Vanden
Berghe
,
Numerical Algorithms
44
,
115
131
(
2007
).
15.
D.
Zhao
,
Z.
Wang
, and
Y.
Dai
,
Computer Physics Communications
167
,
65
75
(
2005
).
16.
P.
Ghelardoni
and
P.
Marzulli
,
Applied Numerical Mathematics
18
,
141
153
(
1995
).
17.
A.
Shokri
and
A.
Shokri
,
Computer Physics Communications
184
,
529
531
(
2013
).
18.
B.
Neta
and
T.
Fukushima
,
Computers and Mathematics with Applications
45
,
383
390
(
2003
).
19.
L.
Brugnano
and
D.
Trigiante
,
Solving Differential Problems by Multistep Initial and Boundary Value Methods
(
Gordon & Breach
,
Amsterdam
,
1998
).
20.
P.
Amodio
and
F.
Mazzia
,
Applied Numerical Mathematics
18
,
23
35
(
1995
).
21.
F.
Iavernaro
and
F.
Mazzia
,
SIAM Journal on Scientific Computing
18
,
270
285
(
1997
).
22.
P.
Amodio
and
F.
Mazzia
,
Numerische Mathematik
66
,
411
421
(
1994
).
23.
F.
Mazzia
,
A.
Sestini
, and
D.
Trigiante
,
SIAM Journal on Numerical Analysis
44
,
1954
1973
(
2006
).
24.
J.
Butcher
,
Numerical methods for ordinary differential equations
, 2nd ed. (
John Wiley & Sons
,
Chichester
,
2003
).
This content is only available via PDF.
You do not currently have access to this content.